T.C. KASTAMONU ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

TOKAT-ZİLE İLÇESİNE AİT TOPRAKTAKİ DOĞAL FON RADYASYONUNUN TESPİTİ

Muazzez GEZELGE

Danışman Jüri Üyesi Jüri Üyesi Doç. Dr. Aybaba HANÇERLİOĞULLARI Yrd. Doç. Dr. Aslı KURNAZ Yrd. Doç. Dr. Javad RAHEBİ

YÜKSEK LİSANS TEZİ FİZİK ANA BİLİM DALI

KASTAMONU – 2017

TEZ ONAYI

Muazzez GEZELGE tarafından hazırlanan "**Tokat-Zile İlçesine Ait Topraktaki Doğal Fon Radyasyonunun Tespiti**" adlı tez çalışması aşağıdaki jüri üyeleri önünde savunulmuş ve oy birliği ile Kastamonu Üniversitesi Fen Bilimleri Enstitüsü **Fizik Anabilim Dalı**'nda YÜKSEK LİSANS TEZİ olarak kabul edilmiştir.

Doç. Dr. Aybaba HANÇERLİOĞULLARI Danışman Kastamonu Üniversitesi Jüri Üyesi Yrd. Doç. Dr. Aslı KURNAZ Kastamonu Üniversitesi Jüri Üyesi Yrd. Doç. Dr. Javad RAHEBİ Kastamonu Üniversitesi

13/09/2017

Enstitü Müdürü V.

Doç. Dr. M. Altan KURNAZ

ТААННÜТNАМЕ

Tez içindeki bütün bilgilerin etik davranış ve akademik kurallar çerçevesinde elde edilerek sunulduğunu, ayrıca tez yazım kurallarına uygun olarak hazırlanan bu çalışmada bana ait olmayan her türlü ifade ve bilginin kaynağına eksiksiz atıf yapıldığını bildirir ve taahhüt ederim.

> İmza Muazzez GEZELGE

Mar

ÖZET

Yüksek Lisans Tezi

TOKAT-ZİLE İLÇESİNE AİT TOPRAKTAKİ DOĞAL FON RADYASYONUNUN TESPİTİ

Muazzez GEZELGE Kastamonu Üniversitesi Fen Bilimleri Enstitüsü Fizik Ana Bilim Dalı

Danışman: Doç. Dr. Aybaba HANÇERLİOĞULLARI

Bu çalışma Tokat-Zile ilçesindeki çevresel radyoaktivite seviyesi ölçümlerinin sonuçlarını sunmaktadır. Çalışma alanındaki farklı bölgelerden toplanan 50 toprak numunelerindeki ²³⁸U, ²³²Th, ⁴⁰K ve fisyon ürünü ¹³⁷Cs radyoaktivite konsantrasyonları belirlenmiştir. Emilen ortalama gamma dozu ve yıllık etkin gama dozu, doğal radyoaktivitenin radyolojik tehlikelerini bu radyonüklitlerin ölçülen konsantrasyonlarını temel alarak değerlendirmek için ayrı ayrı ölçülmüş ve ²³²Th, ²²⁶Ra, ⁴⁰K ve ¹³⁷Cs ortalama aktivite konsantrasyonları sırasıyla 61,8 ± 2,4, 67,9 ± 2,8, 479,1 ± 34,6 ve 7,5 ± 0,3 Bq kg⁻¹ olarak bulunmuştur. Sonuç Tokat'ın yüksek bir doğal radyoaktivite değerine sahip olmadığını göstermiştir.

Anahtar Kelimeler: Zile, Tokat, çevresel radyoaktivite

2017, 46 sayfa Bilim Kodu: 202

ABSTRACT

MSc. Thesis

DETERMINATION OF SOIL OF NATURAL BACKGROUND RADIATION IN THE TOWN OF TOKAT-ZİLE

Muazzez GEZELGE

Kastamonu University Institute of Science Department of Physics

Supervisor: Assoc. Prof. Dr. Aybaba HANÇERLIOĞULLARI

Abstract: This paper presents the measurement results of environmental radioactivity levels for Zile district, Tokat-Turkey. Radiation concentrations of ²³⁸U, ²³²Th, ⁴⁰K and fission product ¹³⁷Cs in 50 soil samples collected from different study sites were determined. To evaluate the radiological hazard of the natural radioactivity, based on the measured concentrations of these radionuclides, the mean absorbed gamma dose and the annual effective dose were evaluated separately. The average activity concentrations of ²³²Th, ²²⁶Ra, ⁴⁰K and ¹³⁷Cs were found as 61.8 ± 2.4, 67.9 ± 2.8, 479.1 ± 34.6 and 7.5 ± 0.3 Bq kg⁻¹, respectively. The results show that Zile has not high background.

Key Words: Zile, Tokat, environmental radioactivity

2017, 46 pages Science Code: 202

TEŞEKKÜR

Yüksek Lisans çalışmalarımda değerli fikirleriyle bana yol göstererek hiçbir yardımını esirgemeyen, en büyük motivasyonu sağlayan danışmanım Doç. Dr. Aybaba HANÇERLİOĞULLARI'na ve tezimle ilgili her aşamada yardımcı olan Yrd. Doç. Dr. Aslı KURNAZ kıymetli hocalarıma teşekkürü bir borç bilirim. Çalışmalarım boyunca değerli bilgilerinden ve yardımlarından yararlandığım Fizik bölümü tüm öğretim üyelerine teşekkür ederim. Ayrıca çalışmalarım sırasında verdiğim sıkıntılara katlanan ve maddi-manevi desteğini hiç eksik etmeyen aileme teşekkür ederim.

Muazzez GEZELGE Kastamonu, Ağustos, 2017

İÇİNDEKİLER

Sayfa

ABSTRACT	v vi ix x xi xii
TEŞEKKÜR v İÇİNDEKİLER v FOTOĞRAFLAR DİZİNİ i	vi vii ix x xi xii
İÇİNDEKİLER	vii ix x xi xii
FOTOĞRAFLAR DİZİNİi	ix x xi xii
	x xi xii
GRAFIKLER DIZINI	xi xii
HARİTALAR DİZİNİ	xii
SİMGELER VE KISALTMALAR DİZİNİ	
ŞEKİLLER DİZİNİ	xiii
TABLOLAR DİZİNİ	xiv
1. GİRİŞ 1	1
1.1. Radyasyonun Tanımı Ve Türleri 2	2
1.2. Radyasyon Çeşitleri	3
1.2.1. İyonlaştırıcı Radyasyonlar 3	3
1.2.1.1. Elektromanyetik Radyasyon	3
1.3. Radyasyon Kaynakları	11
1.3.1. Doğal Radyasyon Kaynakları	12
1.3.2. Yapay Radyasyon Kaynakları	13
1.4. Radyasyon Sayaçları	14
1.4.1. Gaz Dolu Dedektörler	14
1.4.2. İyon Odası	15
1.4.3. Orantılı Sayaçlar	15
1.4.4. Geiger-Müller Dedektörleri	16
1.4.5. Sintilasyon Dedektörleri	16
1.4.6. Yarı İletken Dedektörleri	17
1.4.7. Dozimetreler	18
1.5. Radyasyon Birimleri	19
1.5.1. Aktivite Birimi	19
1.5.2. Işınlama Birimi	19

1.5.3. Soğurulan Doz Birimi	20
1.5.4. Eşdeğer Doz Birimi	20
2. MATERYAL VE METOD	21
2.1. Bölgenin Özellikleri	21
2.2. Yöntem	22
2.2.1. Örneklerinin Toplanması ve Analize Hazırlanması	22
2.3. Materyal	24
2.3.1. Gama Spektrometrik Analizlerde Kullanılan DetektörSistemi	24
2.4. Yüzey Toprağı ve Kum Numunelerindeki Radyoaktivite	25
2.5. Radyolojik Etkilerin Hesaplanması	27
2.6. Spektrum İçin Pik Alanı Hesaplanması	28
3.BULGULAR VE TARTIŞMA	30
3.1.Numunelerdeki Radyasyon Parametrelerinin Hesaplanması	34
3.1.1. Havadan Absorbe Edilen Doz Oranı (D)	34
3.1.2. Yıllık Etkin Doz Eşdeğeri (AEDE)	35
3.1.3. Radyum Eşdeğer Aktivitesi (Ra _{eq})	35
3.1.4. Dış Tehlike İndeksi (Hex)	35
3.2. Toprak Örneklerine İlişkin Gamma Spektrometrisi Sonuçları	36
4.SONUÇLAR	42
KAYNAKLAR	43
ÖZGEÇMİŞ	46

FOTOĞRAFLAR DİZİNİ

SayfaFotoğraf 3.1. Tokat-Zile ilçesine toprak örneğinin görünümü......41

GRAFİKLER DİZİNİ

Sayfa

Grafik 1.1. Bireylerin aldığı yıllık etkin dozun radyoaktif kaynaklara göre	
dağılımı	2
Grafik 1.2. Radyasyon kaynakları	11
Grafik 2.1. Gama pik alanının hesaplanmasında kullanılan parametreler	28
Grafik 3.1. Toprak örneklerinin U-238 aktivite konsantrasyonları	36
Grafik 3.2. Toprak örneklerinin Th-232 aktivite konsantrasyonları	37
Grafik 3.3. Toprak örneklerinin Cs-137 aktivite konsantrasyonları	37
Grafik 3.4. Toprak örneklerinin K-40 aktivite konsantrasyonları	38
Grafik 3.5. Risk aktivite konsantrasyonlarının grafiksel olarak karşılaştırılması	39

HARİTALAR DİZİNİ

Sayfa

Harita 2.1. Tokat Zile ilçesinin düzlemsel kesiti	21
Harita 3.1. Tokat Zile ilçesine ait toprak fonundaki U ²⁰⁰ aktivite şiddet	30
Harita 3.2. Tokat Zile ilcesine ait toprak fonundaki Th ²³² aktivite siddet	57
dağılımı	40
Harita 3.3. Tokat Zile ilçesine ait toprak fonundaki K ⁴⁰ aktivite şiddet	
dağılımı	40
Harita 3.4. Tokat Zile ilçesine ait toprak fonundaki Cs ¹³⁷ aktivite şiddet	41
dagmini	41

SİMGELER ve KISALTMALAR DİZİNİ

Simgeler:	
Bq	Becquerel(Radyoaktivite Birimi)
D	Havadaki Soğrulan Doz Hızı
Gy	Gray (Absorbe Edilen Doz Birimi)
Hex	Dış Tehlike Endeksi
Ι	Gama Işın Şiddeti
n	Nano
Req	Radyum Eşdeğer Aktivitesi
Sv	Sievert, (Eşdeger Doz Birimi)
Μ	Mikro
Kısaltmalar:	
ADC	Analog Sayısal Dönüştürücü
AYKR	Artan Yaşam Boyu Kanser Riski
HpGe	Yüksek Saflıkta Germanyum
HV	Yüksek Voltaj Filtresine Sahip Güç Kaynağı
IAEA	International AtomicEnergyAgency
ICRP	International Commission on RadiologicalProtection
MA	Yükseltici
MCA	Çok Kanallı Analizör
MDA	Minimum Dedekte Edilebilir Aktivite.
NCRP	NationalCouncil on RadiationProtectionandMeasurements
PA	Ön Yükseltici
TAEK	Türkiye Atom Enerjisi Kurumu
UNSCEAR	United Nations ScientificCommittee on theEffects of Atomic
WHO	World HealthOrganization
YEDE	Yıllık Etkin Doz Eşdeğeri
YGDE	Yıllık Ganodal Doz Eşdeğeri
SEM	Taramalı elektron mikroskop

ŞEKİLLER DİZİNİ

Sayfa

Şekil 1.1. Radyasyon meydana gelişi	2
Şekil 1.2. Atomun iyonizasyonu	3
Şekil 1.3. Fotoelektrik etkinin şematik gösterimi	7
Şekil 1.4. Compton saçılmasının şematik gösterimi	8
Şekil 1.5. Çift oluşumunun şematik gösterimi	10
Şekil 1.6. Fotoelektrik olay, compton olayı ve çift oluşumunun baskın	
olduğu bölgeler	10
Şekil 1.7. Gaz dolu dedektörlerin çalışma prensibi	15
Şekil 1.8. Orantılı sayaç	16
Şekil 1.9. NaI sintilatör ve sayım sisteminin şematik diyagramı	17
Şekil 1.10. Yarı iletken diyot dedektörünün temel yapısı	18
Şekil 2.1. Saf germanyum detektörlü gama spektrometrik cihazı	25
Şekil 2.2. NaI (Tl) Sintilasyon dedektörünün görünümü	26

TABLOLAR DİZİNİ

Sayfa

Tablo 1.1. Uranyum serisindeki radyonüklitler	4
Tablo 1.2. Toryum serisindeki radyonüklitler	5
Tablo 1.3. Aktinyum serisindeki radyonüklitler	6
Tablo 1.4. Toprakta Bulunan Doğal Radyonüklitler	13
Tablo 1.5. Toprakta 40_{K} , 238_{U} ve 232_{Th} radyonüklitlerinin ortalama kütle	
konsantrasyonları ve yeryüzünden 1m yukarıda doz şiddetleri	14
Tablo 1.6. Radyasyon birimleri ve dönüşüm faktörleri	19
Tablo 1.7. Farklı radyasyon türleri için kalite faktörleri	20
Tablo 2.1. Zile ilçesi toprak numuneleri koordinatları	22
Tablo 2.2. Yüksek saflıkta germanyum detektörün özellikleri	25
Tablo 2.3. Bazı radyoaktif elementlerin E_{γ} ve f_{γ} değerleri	26
Tablo 3.1. Zile topraklarındaki radyonüklit aktivite konsantrasyonları	30
Tablo 3.2. Zile topraklarındaki risk parametreleri	32

1. GİRİŞ

İnsanlar her gün yer, hava, su, binalar, materyaller, evren ve hatta vücutlarındaki elementlerden kaynaklanan doğal fon radyasyonuna maruz kalmaktadırlar. Topraktaki doğal radyoaktif elementlerin²³⁸U ve²³²Th elementlerinin radyoaktif bozunum serilerinin üyelerinden ve ⁴⁰K'dan, türediği gözlemlenmiştir [1]. Doğal kaynakların yanı sıra, nükleer silah testleri ve nükleer santral kazaları sonucunda oluşan serpintiden dolayı ¹³⁷Cs gibi yapay radyonüklidler de bulunabilir. Doğal kaynaklardan ortaya çıkan gamma fon radyasyonu dozunun değerlendirilmesi özel bir önem taşır, zira insanların maruz kaldığı harici dozun en büyük kısmı doğal radyasyondan kaynaklanmaktadır [2]. Bu dozlar doğal radyonüklidler olan ²³⁸U, ²³²Th ve ⁴⁰K toprak, kum ve taşlardaki konsantrasyonlarına bağlı olarak değişkenlik gösterirler. Atmosferik nükleer silah denemelerinden kaynaklanan radyoaktif serpintinin sebep olabileceği sağlık risklerini değerlendirmek için 1955 yılında kurulan ve kurulduğu yıldan itibaren günümüze kadar bütün radyasyon kaynaklarından ileri gelen dozlar ile ilgili düzenli veriler yayınlayan Birleşmiş Milletler Bilimsel Komitesi (UNSCEAR) raporuna göre bireylerin aldığı yıllık etkin radyasyon dozunun dünya nüfus ağırlıklı ortalaması 2,8 mSv tir [3]. Bu yıllık etkin radyasyon dozunun radyoaktif kaynaklara göre dağılımı Sekil 1.1'de gösterilmektedir. Şekil 1.1'den, bireylerin aldığı yıllık etkin radyasyon dozunun %85'ine karşılık gelen 2,4 mSv'lik dozun doğal radyoaktif kaynaklardan yayınlanan iyonlaştırıcı radyasyonun ve doğal radyoaktif kaynakların sebep olduğu dozun yarısının (1,2 mSv'lik kısmının) ise radon (222Rn) gazının sebep olduğu anlaşılmaktadır. Dünyanın birçok yerinde doğadaki doğal ve yapay radyonüklidlerin konsantrasyon ölçümleri yapılmıştır. Ancak, Türkiye'nin Karadeniz Bölgesinde bulunan Zile hakkında radyonüklidlerin aktivite konsantrasyonlarının dağılımına dair bir veri tabanı oluşturulabilecek yeterli sayıda çalışma bulunmamaktadır. Bu sebeple, Tokat Zile bölgesinden toplanan toprak numunelerindeki doğal ve yapay radyonüklid konsantrasyon dağılımını ve bu radyonüklidlerin radyolojik etkilerini ölçmek, değerlendirmek ve anlamak için bu çalışma yürütülmüştür.

1.1. Radyasyonun Tanımı ve Türleri

Radyasyon, enerjinin tanecik ve/veya elektromanyetik dalga olarak uzayda yayılması veya taşınması olarak tarif edilebilir. Radyasyon etkileşmesine göre iyonlaştırıcı ve iyonlaştırıcı olmayan radyasyon olmak üzere ikiye ayrılır. İyonlaştırıcı radyasyon, etkileştiği maddenin içerdiği atom veya molekülün dış yörüngesinden bir elektron koparmak için yeterli enerjiye sahip radyasyondur. Coulomb etkileşmesi yapan yüklü radyasyonlar doğrudan iyonlaştırıcı radyasyon olarak yükü olmayan ise dolaylı iyonlaştırıcı radyasyon olarak adlandırılabilir. Yayılan enerjinin miktarına ve bu enerjinin kaynağına göre değişen çeşitli radyasyon tipleri vardır. Şekil 1.2'de radyoaktif bir malzemeden yayılan durumlar gösterilmiştir.

Şekil 1.1. Radyasyon meydana gelişi

Alfa, beta, proton, iyonize olmuş yüklü hızlandırılmış enerjik hâle getirilmiş atomlar, yükü olan doğrudan iyonlaştırıcı tanecik radyasyonuna örnek olarak verilebilir. Elektromanyetik spektrumun yüksek frekans bölgesinde yer alan elektromanyetik dalga özelliğine sahip gama ve X-ışınları ile nötronlar yükü olmayan dolaylı iyonlaştırıcı radyasyona örnek olarak verilebilir.

1.2. Radyasyon Çeşitleri

1.2.1. İyonlaştırıcı Radyasyonlar

İyonize radyasyon çevre atomlara enerji aktarır ve elektron kopmasına neden olur. Elektromanyetik ve partiküler olmak üzere ikiye ayrılır.

Şekil 1.2. Atomun iyonizasyonu

1.2.1.1. Elektromanyetik Radyasyon

Elektromanyetik radyasyon X ışınları ve gamma ışınları gibi iyonize radyasyonlar ile ultraviyole ışık (morötesi ışık), infrared ışık (kızılötesi), radar, mikrodalga, radyo dalgaları, görünen ışık ve benzerlerini içeren non-iyonize radyasyonları içermektedir. Uranyum, toryum ve aktinyum serisindeki radyonüklitlerin fiziksel verileri, sırasıyla, Tablo 1.1, Tablo 1.2 ve Tablo 1.3 verilmektedir.

Element	İzotop	Yarılanma süresi	Bozunum süreci	
Uranyum	²³⁸ U	4,47 x 10 ⁹ yıl	Alfa (%100)	
Toryum	²³⁴ Th	24,1 gün	Beta (%100)	
Protaktinyum	^{234m} Pa	1,17 dakika	Beta (%99,8) ve İD (%0,2)*	
Uranyum	²³⁴ U	2,45 x 10 ⁵ yıl	Alfa (%100)	
Toryum	²³⁰ Th	7,54 x 10 ⁴ yıl	Alfa (%100)	
Radyum	²²⁶ Ra	1600 yıl	Alfa (%100)	
Radon	²²² Rn	3,82 gün	Alfa (%100)	
Polonyum	²¹⁸ Po	3,05 dakika	Alfa (%99,98) ve Beta (%0,02)	
Kurşun	²¹⁴ Pb	26,8 dakika	Beta (%100)	
Bizmut	²¹⁴ Bi	19,9 dakika	Alfa (%0,02) ve Beta (%99,98)	
Polonyum	²¹⁴ Po	164 x10 ⁻⁶ saniye Alfa (%)		
Kurşun	²¹⁰ Pb	22,3 yıl	Beta (%100)	
Bizmut	²¹⁰ Bi	5,013 gün	Beta (%100)	
Polonyum	²¹⁰ Po	138,4 gün Alfa (%100		
Kurşun	²⁰⁶ Pb	Kararlı	Kararlı	

Tablo 1.1. Uranyum serisindeki radyonüklitler

*İD: İç dönüşüm

Element	İzotop Yarılanma süresi		Bozunum süreci	
Toryum	²³² Th 1,4 x 10 ¹⁰ yıl		Alfa (%100)	
Radyum	²²⁸ Ra	5,75 yıl	Beta (%100)	
Aktinyum	²²⁸ Ac	6,15 saat	Beta (%100)	
Toryum	²²⁸ Th	1,912 yıl	Alfa (%100)	
Radyum	²²⁴ Ra	3,66 gün	Alfa (%100)	
Radon ²²⁰ Rn		55,6 saniye	Alfa (%100)	
Polonyum ²¹⁶ Po		0,145 saniye	Alfa (%100)	
Kurşun	Kurşun ²¹² Pb		Beta (%100)	
Bizmut ²¹² Bi		60,55 dakika	Alfa (%36) ve Beta (%64)	
Polonyum ²¹² Po		0,3 x10 ⁻⁶ saniye	Alfa (%100)	
Talyum	²⁰⁸ Tl	3,053 dakika	Beta (%100)	
Kurşun	²⁰⁸ Pb	Kararlı	Kararlı	

Tablo 1.2. Toryum serisindeki radyonüklitler

Element	İzotop	Yarılanma süresi	Bozunum süreci
Uranyum	²³⁵ U	7,038 x 10 ⁸ yıl	Alfa (%100)
Toryum	²³¹ Th	25,52 saat	Beta (%100)
Protaktinyum	²³¹ Pa	32760 yıl	Alfa (%100)
Aktinyum	²²⁷ Ac	21,77 yıl	Alfa (%1,4) ve
			Beta (%98,6)
Toryum	²²⁷ Th	18,72 gün	Alfa (%100)
Fransiyum	²²³ Fr	21,8 dakika	Beta (%100)
Radyum	²²³ Ra	11,44 gün	Alfa (%100)
Radon	²¹⁹ Rn	3,96 saniye	Alfa (%100)
Polonyum	²¹⁵ Po	1,78 x10 ⁻³ saniye	Alfa (%100)
Kurşun	²¹¹ Pb	36,1 dakika	Beta (%100)
Bizmut	²¹¹ Bi	2,14 dakika	Alfa (%99,7) ve Beta (%0,3)
Talyum	²⁰⁷ Tl	4,77 dakika	Beta (%100)
Kurşun	²⁰⁷ Pb	Kararlı	Kararlı

Tablo 1.3. Aktinyum serisindeki radyonüklitler

**X ışınlarının dalga boyu 0.04-1000 A⁰arasında değişmektedir.

Gama ve x ışınlarının, alfa ve beta parçacıklarına göre madde içine nüfuz etme kabiliyetleri çok daha fazla (betalara göre 100 kat daha fazla), iyonlaşmaya sebep olma etkileri ise çok daha azdır.

Fotoelektrik soğurma sürecinde bir foton, tam olarak soğurulacağı soğurucu malzemeyi oluşturan atomlar ile etkileşmeye maruz kalır ve süreç sonucunda fotonun yerini soğurucu atomun dış yörüngesinden fırlatılan enerjik foto-elektron alır. Fotoelektrik etki şematik olarak Şekil 1.3'de gösterilmektedir.

Şekil 1.3. Fotoelektrik etkinin şematik gösterimi

Yeterli enerjiye sahip gama ve X-ışınları için foto-elektron, en muhtemel atoma en zayıf şekilde bağlı K-kabuğundan fırlatılan elektrondur ve foto-elektronun enerjisi,

$$E_e = hv - E_b \tag{1.1}$$

ile verilir. Burada, E_b ; foto-elektronun bağlanma enerjisidir. Birkaç yüz keV'den daha büyük enerjili gama-ışınları için foto-elektronlar, orijinal foton enerjisinin büyük bir kısmına sahip olur. Foto-elektrona ilave olarak etkileşme aynı zamanda elektron tabakasında boşluk olan iyonlaşmış soğurucu atomu da meydana getirir. Fotoelektrik etki, bağıl olarak düşük enerjili gama ve X-ışınları için baskın bir etkileşme sürecidir. Süreç, aynı zamanda atom sayısı yüksek olan (yüksek Z'li) soğurucular için de etkilidir. Bütün gama veya X-ışını enerjilerini (E_{γ} veya E_X) ve Z'leri kapsayacak şekilde atom başına foto-elektrik soğurma ihtimali için geçerli tek bir analitik tanım olmamakla birlikte kaba bir yaklaşım,

$$\tau \cong \text{sabit} \times \frac{Z^n}{E_{\gamma,X}^{3,5}}$$
(1.2)

bağıntısı ile verilebilir [1]. Burada n, ilgilenilen gama-ışını ile ilgili olarak 4-5 aralığında değişmektedir. Fotoelektrik soğurma ihtimalinin soğurucunun atom sayısına keskin bağımlılığı, yüksek Z'li soğurucu malzemelerin gama ve X-ışını kaynaklarının zırhı için etkin bir şekilde tercih edilme sebebidir.

Compton saçılması etkileşme süreci, gelen gama veya X-ışını ile soğurucu malzemenin atomundaki bir elektron arasında gerçekleşir. Compton saçılması, bilinen bir radyoizotop kaynaktan yayınlanan tipik bir enerji değerindeki gama-ışını için genellikle etkin bir mekanizmadır. Compton saçılması şematik olarak Şekil 1.4'de gösterilmektedir. Compton saçılmasında, gelen foton orijinal yönüne (geliş açısına) göre bir θ açısı ile saçılır. Foton enerjisinin bir kısmını başlangıçta hareketsiz olarak kabul edilen elektrona aktararak onun da bir ϕ açısı ile saçılmasını sağlar. Saçılmalar bütün açılarda mümkün olduğundan elektrona aktarılan enerji, sıfırdan gama-ışını enerjisinin önemli bir kısmına kadar değişebilir [1].

Şekil 1.4. Compton saçılmasının şematik gösterimi

Enerji aktarımı ile ilgili ifade ve verilen herhangi bir etkileşim için saçılma açısı enerji ve momentum korunumu formülleri ile kolayca elde edilebilir. Saçılan fotonun enerjisi,

$$E_{S} = \frac{E_{G}}{1 + \frac{E_{G}}{m_{0} \cdot c^{2}} (1 - \cos \theta)}$$
(1.3)

bağıntısı ile verilir. Burada E_S; saçılan fotonun enerjisi, v; saçılan fotonun frekansı, h; Planck sabiti (E_S=h.v), E_G; gelen fotonun enerjisi, v; gelen fotonun frekansı (E_G=h.v), m₀; elektronun durgun enerjisi (0,511 MeV) ve θ ; gelen fotonun geliş açısına göre saçılma açısıdır. Compton kayması ($\Delta\lambda$) olarak bilinen saçılan fotonun dalga boyu (λ_s) ile gelen fotonun dalga boyu (λ_G) arasındaki fark,

$$\lambda_{\rm S} - \lambda_{\rm G} = \Delta \lambda = \frac{\rm h}{\rm m_0 \cdot c} (1 - \cos \theta) \tag{1.4}$$

bağıntısı ile verilir. Soğurucu malzemenin içerdiği atom başına Compton saçılma ihtimali, hedef atomlarının elektron sayısına bağlıdır ve bu yüzden atom numarası Z ile doğru orantılı olarak artar.

Çift oluşumu, foton ile madde etkileşmesinde üçüncü önemli süreçtir. Gelen fotonun enerjisi bir elektronun durgun kütle enerjisi olan 0,511 MeV'den iki kat daha büyükse (>1,02 MeV), çift oluşumu sürecinin meydana gelmesi enerjik olarak mümkündür. Uygulamada, bu etkileşmenin olma ihtimali, foton enerjisi birkaç MeV'e yaklaşana kadar çok düşüktür ve bu yüzden çift oluşumu baskın olarak yüksek enerjili fotonlar için etkindir [1]. Çift oluşumu, şematik olarak Şekil 1.7'de gösterilmektedir. Bir çekirdeğin Coulomb alanında meydan gelmesi gereken etkileşme sürecinde, gama veya X-ışını fotonu, yerini bir elektron-pozitron çiftine bırakarak kaybolur. Çift oluşumu için gerekli olan 1,02 MeV enerjinin üzerinde bir enerjiye sahip fotonun sahip olduğu fazla enerjinin tamamı pozitron ve elektron tarafından paylaşılacak şekilde kinetik enerjiye dönüşür. Pozitron, soğurucu ortamda bir elektronla birleşerek yok olmak suretiyle yok olma radyasyonu olarak bilinen ve gama-ışını dedektörlerinde önemli rol oynayan her birinin enerjisi 0,511 MeV olan iki gama-ışınına dönüşür. Çekirdek başına çift oluşumu ihtimalini veren basit bir formül olmamakla birlikte ihtimalin büyüklüğü, soğurucu malzemenin atom sayınını karesi (Z^2) ile değişmektedir [1].

Şekil 1.5. Çift oluşumunun şematik gösterimi

Yukarıda sözü edilen üç etkileşme sürecinin farklı soğurucu malzemeler için izafi önemi veya hangi enerji aralıklarında etkili olabildikleri Şekil 1.6'da verilmektedir [1].

Şekil 1.6. Fotoelektrik olay, compton olayı ve çift oluşumunun baskın olduğu bölgeler

Şekil 1.6'de gösterilen sol taraftaki çizgi, fotoelektrik soğurma ile Compton saçılması ihtimallerinin, soğurucu malzemenin atom sayısına bağlı olarak eşit olduğu enerji değeridir. Sağ taraftaki çizgi ise, Compton saçılması ile çift oluşumu ihtimallerinin, soğurucu malzemenin atom sayısına bağlı olarak eşit olduğu enerji değeridir.

Compton saçılmasına ilave olarak saçılmanın diğer bir tipi de gama veya X-ışını fotonunun bağdaşık (uyumlu) olarak soğurucu malzemenin içerdiği atom elektronlarının tamamı ile etkileşmesidir. Etkileşme sonucunda herhangi bir elektron uyarmasının veya iyonlaşmanın olmadığı bu süreç, Rayleigh saçılması veya bağdaşık (coherent) saçılma olarak bilinir. Bununla birlikte meydana gelme ihtimali, tipik olarak birkaç yüz keV düşük enerjili fotonlar için önem kazanan ve Z'si yüksek soğurucu malzemelerde belirgin olan bu saçılma sürecinde, fotonun yönü değişmektedir.

1.3. Radyasyon Kaynakları

Yeryüzündeki tüm canlılar ve cansızlar havada, suda, toprakta, hatta kendi vücutları içerisindeki doğal radyasyon kaynakları ve bunlara ek olarak insanlar tarafından üretilen yapay radyasyon kaynaklarının her gün ışınımına maruz kalmaktadırlar. (Grafik 1.2) [4].

Grafik 1.2. Radyasyon kaynakları

İnsanoğlu var oluşundan bu yana sürekli olarak radyasyonla iç içe yaşamak zorunda kalmıştır. Dünyanın oluşumuyla birlikte tabiatta yerini alan çok uzun ömürlü (milyarlarca yıl) radyoaktif elementler yaşadığımız çevrede normal ve kaçınılmaz olarak kabul edilen doğal bir radyasyon düzeyi (doğal fon) oluşturmuşlardır. Radyasyon kaynaklarını, doğal ve yapay olmak üzere, iki sınıfa ayırabiliriz.

1.3.1. Doğal Radyasyon Kaynakları

Doğada kendiliğinden var olan yaşamımızın her anında maruz kaldığımız radyasyon kaynaklarıdır. Canlıların maruz kaldığı radyasyonun yaklaşık % 85'lik bölümü doğal kaynaklarıdır. Canlıların maruz kaldığı radyasyonun Bütün canlıların maruz kaldığı genellikle zararsız olan bu radyasyon, çevresel, fon ya da arka alan radyasyonu olarak adlandırılır. Doğal radyasyonu oluşturan kaynaklar üç başlıkta toplanabilir bunlar; kozmik radyasyon, yer küre radyasyonu ve içsel radyasyon alarak isimlendirilir. Dünya atmosferi güneşten ve galaksilerden kaynaklanan yüksek enerjili proton ve nötron parçacıkları ile sürekli bombardımana maruz kalmaktadır. Bu parçacıkların enerjileri 1 MeV ile 10⁴MeV arasında değişmektedir [4,5]. Dünyanın atmosferi ve manyetik alanı yeryüzündeki canlı hayatı zararlı kozmik radyasyondan koruma gibi bir işlevi vardır. Bu nedenle kozmik radyasyona hangi yükseklikte maruz kalındığına bağlı olarak alınan dozun seviyesini etkiler. Yükseklere çıkıldıkça atmosfer kalınlığı ve manyetik alanın şiddeti azalır. Kozmik radyasyon atmosferde bulunan gaz atomlarını etkiler ve bu etkileşim sonucu müonlar ve pionlar gibi parçacıklar oluşur [5,6].

Gama ışınımı yapan U-238 ve Th-232 serileri ile K-40 dış kaynaklı radyasyon dozunu etkileyen temel bozulmaları oluşturur. Yerkabuğunda bulunan bu üç element ve bunların izotopları insanların maruz kaldığı radyasyonun önemli kısmını oluşturmaktadır. Üst kabukta bulunan K-40, yaklaşık 3ppm ortalama konsantrasyona, granit kayalarda bulunan Th-232, 10-15 ppm ortalama konsantrasyona, uranyumun üç farklı izotopu da granit yapılarda toplamda 3-4 ppm ortalama konsantrasyona sahiptir. Uranyum elementinin üç farklı izotopunun bulunma yüzdeleri sırasıyla U-238 için 99,274 %, U-235 için 0,7205 % ve U-234 için 0,0056 % seviyelerindedir [6,7]. Yer altındaki kaya ve toprak katmanlarında bulunan uranyum U-238 bazı elementlerin uzun radyoizotop bozunma serisinin başlangıç kaynağıdır ve bozunmaya uğrayarak kararlı kurşuna kadar dönüşür. Bu bozunma serisinin ilk ürünleri arasında yer alan Rn-222 radon radyoizotopu zamanla havaya karışır ve

bozunmaya devam eder. Benzer şekilde radyoaktif toryum (Th-232) elementi de başka bir radyoaktif bozunma serisinin başlamasına kaynaklık eden maddedir. K-40 ağırlıklı olarak yerkabuğunun % 2,4' ünü oluşturur ve aktivite konsantrasyonu U-238 ve Th-232' ye göre daha büyüktür [7]. Tablo 1.4'de toprakta bulunan doğal radyonüklitlerin UNSCEAR-2015 raporlarında tespit edilen konsantrasyonları verilmiştir.

	K-40	U-238	Ra -226	Th -232
Değişim Aralığı	140-850	16-110	17-60	11-64
Ortalama	400	35	35	45

Tablo 1.4. Toprakta Bulunan Doğal Radyonüklit Konsantrasyonu (Bq /kg)

Doğal radyasyonun bir kısmını uzaydan gelen kozmik ışınlar oluşturur. Günlük yaşantımızda kozmik ışınlar nedeniyle maruz kaldığımız radyasyon dozunun dünya ortalaması 0,39 mSv/ yıl'dır. Radon gazından dolayı dünya genelinde maruz kalınan ortalama doz 1,3 mSv/ yıl'dır. İnsanların yaşadıkları bölgelere bağlı olarak aldıkları doz bu ortalamanın altında yada üzerinde olabilir. Dünyanın bazı bölgeleri radyoizotop konsantrasyonu bakımından yüksek değerler içeren toprak yapısına sahiptir. Bu özelliğe sahip bölgelerin başında Hindistan'ın Kerala bölgesi, Fransa ve Brezilya'nın bazı bölgeleri yer alır. Bu bölgelerde alınan doz dünya ortalamasının yaklaşık 20 katına kadar çıkabilir [8].

1.3.2. Yapay Radyasyon Kaynakları

Yapay radyasyon kaynakları da tıpkı doğal radyasyon kaynakları gibi belli miktarlar da radyasyon dozuna maruz kalınmasına neden olurlar. Ancak bu doz miktarı talebe bağlı olarak artsa da, doğal kaynaklardan alınan doza göre çok daha düşüktür. Doğal radyasyon kaynaklarının aksine tamamen kontrol altında olmaları da maruz kalınacak doz miktarı açısından önemli bir özelliktir. Tıbbi, zirai ve endüstriyel amaçla kullanılan X ışınları ve yapay radyoaktif maddeler, nükleer bomba denemeleri sonucu meydana gelen nükleer serpintiler, çok az da olsa nükleer güç üretiminden salınan radyoaktif maddeler ile bazı tüketici ürünlerinde kullanılan radyoaktif maddeler bilinen başlıca yapay radyasyon kaynaklarıdır. (Tablo 1.5).

	Ortalama Aktivite	Havada Soğurulan	
Radyonüklit	Kütle Konsantrasyonu	Doz Şiddeti	
	(Bq/kg)	(nGy/saat)	
⁴⁰ K	370 (100-700)	16 (4-30)	
²³⁸ U	25 (10-50)	11 (4-21)	
²³² Th	25 (7-50)	17 (5-33)	

Tablo1.5. Toprakta ⁴⁰K, ²³⁸U, ²³²Th radyonüklitlerinin ortalama kütle
konsantrasyonları ve yeryüzünden 1m yukarıda doz şiddetleri

Parantez içinde verilen değerler tipik oranlardır.

1.4. Radyasyon Sayaçları

Herhangi bir ortamdaki radyasyonun hangi oranlarda bulunduğunu belirlemek ve ölçümlemek için geliştirilmiş dedektörlere ihtiyaç duyulur. Radyasyon duyu organlarımızla algılanabilir bir fiziksel etkiye sahip değildir. Bu nedenle olası kazalarda ya da nükleer saldırılar sonucu oluşacak kirlenmenin ölçülmesinde veya akademik alanlarda yapılan ölçüm çalışmalarında farklı türde dedektörler kullanılması gerekir. Ölçülmek istenilen radyasyonun türüne, ölçüm yapılacak yere ve çalışma prensibine bağlı olarak geliştirilmiş çok çeşitli dedektöler bulunmaktadır. Yaygın olarak kullanılan dedektör çeşitleri aşağıda verilmiştir.

1.4.1. Gaz Dolu Dedektörler

Bu dedektörlerin temeldeki çalışma ilkesi iyonlaştırıcı ışınların gaz ile dolu ortamda sebep olduğu iyonlaşmaların ölçülmesine dayanır. Şekil 1.10'da gaz dolu dedektörlerin temel yapısı gösterilmektedir. İyonlaştırıcı radyasyonun açığa çıkardığı gaz iyonları elektriksel yüke sahiptir. Pozitif ve negatif elektrotlar sayesinde gaz iyonlarına potansiyel fark uygulandığında dedektör içinde zıt yönlere hareket ederler. Yüklü iyonların hareketi sonucu dedektör içinde bir elektrik akımı meydana gelir ve bu akıma duyarlı aygıtlarla hesaplanır. Oluşan bu elektrik akımının şiddetine bağlı olarak radyasyon ölçümü yapılır. Elektrotlar arasında uygulanan potansiyel farkına bağlı olarak tasarlanmış farklı dedektör türleri vardır.

Şekil 1.7. Gaz dolu dedektörlerin çalışma prensibi

1.4.2. İyon Odası

İyon odası gaz-dolu bir tüpe benzer, radyasyonun içeri ulaşabileceği bir aralık, tüpün ortasından geçen iletken bir tel, gösterge paneli ve güç kaynağından oluşur. Merkezden geçen iletken tel kaynak tarafından devamlı olarak pozitif elektrikle yüklenir böylece telin negatif yüklü gaz iyonlarının hareket etmesini sağlar. İyon odasında merkezden geçen tele uygulanan potansiyel fark diğer dedektörlerde göre daha küçüktür. Bu tür dedektörler genellikle medikal alanda doz hızı ölçümünde ışınlanma düzeyinin belirlenmesi amacıyla radyasyon alan dedektörü ve cep dozimetresi olarak kullanılır.

1.4.3. Orantılı Sayaçlar

Bu dedektörler tasarım ve çalışma prensibi bakımından iyon odasına detektörleriyle benzerlik gösterirler. İki dedektör arasındaki temel fark orantılı sayaçlarda daha yüksek potansiyel fark kullanılmasıdır. Şekil 1.11'de orantılı Sayaçların yapısı verilmiştir. Uygulanan yüksek gerilim nedeniyle gaz iyonlarının oluşturduğu elektrik akımı, ayrı bir radyasyon sayımına olanak verecek kadar yükseltir. Bu dedektörler ışınımın enerjisi belirlememize de olanak sağlar. Orantılı sayaçlarda, dedektör içi ilk iyonlaşma düzeyi ve buna bağlı olarak oluşan elektrik akımı doğru orantılıdır. Farklı enerji düzeylerine sahip radyasyon kaynaklarının neden olduğu iyonlaşma sonucu elde edilen elektrik akım şiddetleri de birbirlerinden farklı olacaktır. Bu sayede farklı radyasyon kaynaklarından gelen ışınımların enerjilerinin ayırt edilmesi mümkün olur.

Şekil 1.8. Orantılı sayaç

1.4.4. Geiger-Müller dedektörleri

Geiger-Müller dedektörleri de tıpkı orantılı sayaçlar gibi yüksek potansiyel fark altında çalışan iyon odalarıdır. Kullanılan yüksek gerilim nedeniyle Geiger-Müller dedektörleri gaz odasına giren radyasyonun enerji seviyesinden bağımsız olarak bir elektrik sinyali yaratır. Dedektöre giren her bir iyonlaştırıcı parçacık dedektörün içinden geçerken bir tür çığ boşalmasına yol açtığı plato voltajı kullanılır. GM sayaçları genellikle beta parçacıkları ya da gama radyasyonu gibi iyonlaştırıcı radyasyonun sayılmasında tercih edilir.

1.4.5. Sintilasyon dedektörleri

Sintilasyon dedektörleri, radyasyonun dedektör içerisindeki kristal yapıdaki maddenin atomlarını uyarması sonucu açığa çıkan görünür ışığın yarattığı etkiden faydalanılarak ortamdaki radyasyonun belirlenmesinde kullanılan bir dedektör çeşididir. Sintilasyon dedektörlerinin başlıca bileşenleri kristal yapıya sahip madde, fotokatot ve dinotlardır. Gama radyasyonun kristal madde ile etkileşmesi sonucu kristal yapıdan ışık yayımlanır. Bu fotonlar fotokatota çarparak elektronların

kopmasına neden olur. Koparılan fotoelektronlar uygulanan yüksek potansiyel fark ile dedektör tüpü içine yönlendirilerek burada dinotlara çarpmaları sağlanır.

Şekil 1.9. NaI sintilatör ve sayım sisteminin şematik diyagramı

Dinotlara çarpan her bir fotoelektron, daha fazla elektronun koparılmasına yol açar ve elektron sayısı katlanarak artar. Daha sonra bu elektron kümesi tüpün ucunda bulunan anot üzerinde toplanır. Elektronların tüpün içerisindeki bu hareketi sonucu elektrik akımı meydana gelir. Oluşan elektrik akımı hassas aygıtlar aracılığı ile ölçülerek tüpe giren radyasyonun enerji seviyesi hakkında istenilen değerler elde edilir. Sintilasyon dedektörleri alan radyasyon ölçümlerinde, radyoaktif serpintilerin belirlenmesi çalışmalarında ve nükleer santrallerde kontrol amacıyla sıklıkla kullanılırlar.

1.4.6. Yarı İletken Dedektörleri

Yarı iletken dedektörlerin çalışma şekli temelde gaz-dolu dedektörler ile benzemektedir. Ancak bu dedektörlerde gaz yerine yarı iletken katı maddeler kullanılmaktadır. Dedektöre ulaşan iyonlaştırıcı radyasyonun etkisiyle katı maddelerin atomlarındaki elektronlar harekete geçer ve bu etki ile kristal yapıya sahip yarı iletken maddede boşluklar ortaya çıkar. Bu olay bir bakıma iyonlaştırıcı ışımaların etkisiyle pozitif yüklü gaz moleküllerinin oluşumu ile aynıdır. Yarı iletken maddenin uçları arasına uygulanan gerilimin etkisi ile elektronlar ve boşluklar harekete geçer. Elektronların hareketi sonucu oluşan elektrik akımı diğer dedektörlerde olduğu gibi duyarlılığı yüksek aygıtlarla ölçülür ve bu değerlere bağlı olarak radyasyonla ilgili bilgiye ulaşılır.

Şekil 1.10. Yarı iletken diyot dedektörünün temel yapısı

1.4.7. Dozimetreler

Yüksek radyasyona kirliliğinin olduğu alanlarda çalışan kişilerin can güvenliğini sağlamak amacıyla doz ölçümü ve değerlendirmesi yapılması hayati önem taşımaktadır. Bu amaçla dozimetrik bir metot uygulanmaktadır. Bu sistem gereyince değerlendirmeler resmi kurumlar tarafından önceden belirlenen limit doz değerlerine bağlı olarak yapılır. Ölçümler ise dozimetre olarak adlandırılan ve eşdeğer radyasyon dozu ölçümü yapabilen cihazlarla yapılmaktadır.

Yaygın olarak kullanılan dozimetreler, özel olarak tasarlanmış bir kılıfa(taşıyıcı) konulmuş bir dedektör'den oluşmaktadır. Dedektör ortamdaki radyasyondan elde edilen verilerin farklı etkileşim metotlarıyla kaydedilmesini sağlar. Farklı maddelerden farklı kalınlıklarda tasarlanan kılıf(taşıyıcı) ise değişik radyasyon türlerinden ve farklı enerji seviyelerinde alınan dozların ayrı ayrı tespit edilmesine yarar. Bu nedenle beden, deri veya gözlerdeki eşdeğer dozun ve deri altındaki dokulardaki etkin dozların ölçülmesine olanak sağlayan çeşitli kalınlık ve yoğunluklarda filtreler kullanılır.

Bu cihazlar gama ışını, x-ışınları, beta ve nötron parçacıklarının ışınım doz ölçümlerini yapmak için kullanılmaktadır. Kullanılacak olan dozimetre ölçülen değerler ışımanın türüne, enerji seviyesine, ölçüm mesafesine, açısına ve dozimetrenin tepki süresine göre değişir.

1.5. Radyasyon Birimleri

Radyasyon birimlerinin başlıcaları aktivite, ışınlama, absorblanan doz ve eşdeğer doz'dur. Uluslararası Radyasyon Birimleri Komisyonu (ICRU) yaptığı çalışmalar sonucunda, aktivite için Curie, ışınlama için Röntgen, absorblanan doz için Rad ve eşdeğer doz için Rem'i radyasyon birimleri olarak tanımlamıştır [9]. Tablo 1.6'da dönüşüm birimleri ve dönüşüm faktörleri verilmiştir.

Büyüklük	iyüklük ve ve Sembolü Sembolü		Dönüşüm Faktörü	
Aktivite	Becquerel (Bq)	Curie (Ci)	1Ci = 3.7x10 Bq	
Işınlama	Röntgen (C/kg)	Röntgen (R)	1 C/kg = 3876 R	
Absorblanan Doz	Gray (Gy)	Rad (rad)	1 Gy = 100 rad	
Eşdeğer Doz	Sievert (Sv)	Rem (rem)	1 Sv = 100 rem	

Tablo 1.6. Radyasyon birimleri ve dönüşüm faktörleri

1.5.1. Aktivite Birimi

Birim zamanda bozunan atomların sayısı aktivite olarak tanımlanmaktadır. Aktivite birimi; eskiden 1 gram ²²⁶Ra'nın bozunma hızı olarak tanımlanmış ve Curie(Ci) olarak adlandırılmıştır. Saniyede ki 3.7× 10¹⁰ bozunmaya 1 Curie denilmektedir. Yeni aktivite birimi, doğal radyoaktiviteyi keşfetmesi onuruna, Becquerel olarak adlandırılmıştır. Becquerel ve curie arasındaki ilişki şöyledir;

$$1 \text{ Ci} = 3.7 \times 10^{10}$$
 bozunma/s $1 \text{ Bq} = 2.7 \times 10^{-11}$ Ci = 27 pCi

1.5.2. Işınlanma Birimi

Işınlama birimi, χ ve γ ışınlarının havayı iyonlaştırma kabiliyetinin ölçüsü olarak tanımlanmaktadır. Işınlama birimi Röntgen (R) olup normal şartlarda (0°C ve 760

mmHg basıncı) havanın 1kg'ında 2.58×10^{-4} Coulomb'luk pozitif veya negatif elektrik yüklü iyonlar meydana getiren radyasyon miktarı olarak tanımlanmaktadır. SI birim sisteminde ışınlama biriminin özel bir adı yoktur.

1.5.3. Soğurulan Doz Birimi

Soğurulan dozbüyüklüğü, malzemelerde soğurulan enerjinin bir ölçüsüdür. Soğurulan doz için kullanılan eski birim rad (Roentgen Absorbed Dose)'dır. 1 rad herhangi bir malzemenin 1 gramının 100 erg'lik enerji soğurması olarak tanımlanmıştır. SI birim sisteminde absorblanan doz birimi gray (Gy) olup, 1kg'lık bir maddeye 1 joule'lük enerji veren herhangi bir iyonlaştırıcı radyasyon dozudur.

1Gy = 1 J/kg $1rad = 10^{-2} J/kg$ 1Gy = 100 rad

1.5.4. Eşdeğer Doz Birimi

Soğurulan dozun meydana getirdiği biyolojik etkiler, iyonlaştırıcı radyasyonların tiplerine ve meydana getirdikleri iyonizasyonun yoğunluğuna bağlıdır. Tablo 1.7'de Çeşitli radyasyon tipleri için kalite faktörleri rasındaki ilişki verilmiştir. Eşdeğer doz birimi, absorblanmış doz ile kalite faktörünün çarpımına eşittir.

Radyasyon Türü	Kalite Faktörü
X ve Gama Işınları	1
Elektronlar ve Beta Parçacıkları	1
Nötronlar;enerjileri < 10 keV	3
Nötronlar;enerjileri > 10 keV	10
Alfa Parçacıkları	20

Tablo 1.7. Farklı radyasyon türleri için kalite faktörleri

2. MATERYAL VE METOD

2.1. Bölgenin Özellikleri

Zile, Tokat ilinin 67 km batısında yer alan bir ilçedir. Zile ilçesi coğrafi konumu itibariyle 40 derece 19 dakika kuzey enlemi, 35 derece 45 dakika doğu boylamı arasında yer almaktadır. Zile'nin bağlı olduğu Tokat ili, Karadeniz Bölgesinin orta Karadeniz bölümünde yer almaktadır. İl toprakları 35° 27' ve 37° 39' doğu boylamları ile 39° 52' ve 40° 55' kuzey enlemleri arasında kalır.

Harita 2.1. Tokat -Zile ilçesinin düzlemsel kesiti

Bölgede, iklime bağlı olarak asit tepkime (reaksiyon) gösteren, koyu renkli, humus bakımından zengin yıkanmış çeşitli topraklar bulunur. Kuzey Anadolu Dağları'nın fazla yağış alan kuzey yamaçlarında boz ve esmer renkte kireçsiz orman toprakları yaygındır. Toprak yüzeyinde kimyasal reaksiyonun fazla olması, toprak katmanlarının kalınlaşmasını kolaylaştırır. Aynı dağların güneye bakan yamaçlarında yağışın azalması ve güneş radyasyonunun artmasıyla kireçli kahverengi orman toprakları bulunur.

2.2. Yöntem

2.2.1. Örneklerinin Toplanması ve Analize Hazırlanması

Tokat Zile bölgesinden 50 adet toprak numuneleri alınmıştır. Taş, çimen ve odun parçaları örnekten çıkarılmış ve numuneler 1-1,5 kilogramlık plastik poşetlere konulmuştur. Daha sonrasında bu numuneler Kastamonu Üniversitesi Fizik Departmanı Nükleer Fizik Laboratuvarına getirilmiştir. Tüm numuneler kurutulmuş, elenmiş ve 150 mililitrelik silindirik plastik konulmuşlardır. Tartıldıktan sonra ağızları sıkıca kapatılıp parafilm ile iyice sızdırmaz hale getirilmiştir. Ra ve bozunma ürünlerinin dengeye ulaşmaları için 1 ay süreyle bekletilmişlerdir. Tablo 2.1'de Tokat bölgesi Zile ilçesine ait toprak numunelerinin koordinatları gösterilmiştir.

SAYI	NUMUNE	ENLEM	BOYLAM
1	Kırlar	40,18,01.49	35,59,29.41
2	Saraç	40,19,20.24	35,50,35.12
3	YıldizTepe2	40,11,23.82	35,53,23.33
4	Bayir	40,20,51.06	35,53,23.06
5	YıldizTepe1	40,18,01.50	35,53,18.15
6	TuğlaTopraği2	40,19,20.25	35,59,29.42
7	Ede Köyü	40,11,23.83	35,50,35.13
8	TuğlaTopraği3	40,20,51.07	35,53,23.21
9	Büyükaköz	40,18,01.51	35,53,23.48
10	Derebași	40,19,20.26	35,53,18.16
11	Olukman	40,11,23.84	35,59,29.43
12	Karayün 2	40,20,51.08	35,50,35.14
13	Büyükaköz1	40,18,01.52	35,53,23.75
14	Bazlambaç 2	40,19,20.27	35,53,23.102
15	Kazankaya 2	40,11,23.85	35,53,18.17
16	YildizTepe3	40,20,51.09	35,59,29.44
17	Üçköy 2	40,18,01.53	35,50,35.15

Tablo 2.1. Zile ilçesi toprak numuneleri koordinatları

Tablo 2.1	'in Devamı		
SAYI	NUMUNE	ENLEM	BOYLAM
18	Yeniköy 1	40,19,20.28	35,53,23.129
19	Bazlambaç 1	40,11,23.86	35,53,23.156
20	Belpinar	40,20,51.10	35,53,18.18
21	Binbașioğlu	40,18,01.54	35,59,29.45
22	Armutalan	40,19,20.29	35,50,35.16
23	GüzelBeyli	40,11,23.87	35,53,23.183
24	AlibaĞi	40,20,51.11	35,53,23.210
25	Göçenli	40,18,01.55	35,53,18.19
26	Yaylakent	40,19,20.30	35,59,29.46
27	Elmacık	40,11,23.88	35,50,35.17
28	Kuruçay	40,20,51.12	35,53,23.237
29	Karakuzu	40,18,01.56	35,53,23.264
30	Temecük	40,19,20.31	35,53,18.20
31	ÜçKöy 1	40,11,23.89	35,59,29.47
32	Karayün 1	40,20,51.13	35,50,35.18
33	Karaşeyh 1	40,18,01.57	35,53,23.291
34	Kazankaya 1	40,19,20.32	35,53,23.318
35	Reșadiye 2	40,11,23.90	35,53,18.21
36	Çayır	40,20,51.14	35,59,29.48
37	İstasyon	40,18,01.58	35,50,35.19
38	KaraŞeyh 2	40,19,20.33	35,53,23.345
39	KaraKaya	40,11,23.91	35,53,23.372

Tablo 2.1	Tablo 2.1'in Devamı						
SAYI	NUMUNE	ENLEM	BOYLAM				
40	YeniKöy 2	40,20,51.15	35,53,18.22				
41	Evrenköy	40,18,01.59	35,59,29.49				
42	Kervansaray	40,19,20.34	35,50,35.20				
43	Sofular	40,11,23.92	35,53,23.399				
44	YaylaYolu	40,20,51.16	35,53,23.426				
45	Tuğla Topragi 1	40,18,01.60	35,53,18.23				
46	Emirören	40,19,20.35	35,59,29.50				
47	Hasanaga	40,11,23.93	35,50,35.21				
48	Reşadiye 1	40,20,51.17	35,53,23.453				
49	Pekmez 1	40,18,01.61	35,53,23.480				
50	Pekmez 2	40,19,20.36	35,53,18.24				

Nükleer analiz yöntemleri içerisinde çevremizdeki maddelerin hangilerinin radyoaktif olup hangilerinin radyoaktif olmadığının tespit edilmesinde, tespit edilen radyoaktif maddelerin ise bu aktivitelerinin hangi izotoplardan kaynaklandığını, aktivite yoğunluğunun ne kadar olduğunu anlamada ve çekirdeğin yapısının araştırılmasında gama spektroskopisi önemli bir yer teşkil etmektedir.

2.3. Materyal

2.3.1. Gama Spektrometrik Analizlerde Kullanılan Detektör Sistemi

Toprak örneklerinin aktivite ölçümleri özellikleri, ORTEC 3x3 inch NaI(Tl) Işıldama (Scintillation) detektörü kullanılarak gamma ışını spektrometresiyle ölçülmüştür.

Tablo 2.2'de verilen Canberra GX5020 modeli kuyu tipi bir HPGe detektörürün yapısı ve özellikleri verilmiş ve Şekil 2.1 gösterilmiştir [6].

Şekil 2.1. Saf germanyum detektörlü gama spektrometrik ölçüm sistemi

Tablo 2.2	. Yüksek saflıkta	germanyum	detektörün	özellikleri
-----------	-------------------	-----------	------------	-------------

Detektör modeli	Canberra HPGe Detector
Bağıl verim	%50
Enerji ayırma gücü ve pik/Compton oranı ⁶⁰ Co'ın 1332,5 keV enerjideki yarı maksimumdaki tam genişliği	1,94 keV ve 69.8:1
Detektör geometrisi ve kristal tipi	Kapalı uçlu, eş eksenli ve p-tipi Ge
Çapı ve yüksekliği	65.5 mm ve 62.5 mm
Pencereden uzaklık	5 mm
Kriyostat ve azot kabı	Dikey geometrili

2.4. Yüzey Toprağı ve Kum Numunelerindeki Radyoaktivite

Bölgedeki toprakdaki doğal radyoaktivite ORTEC 3 x 3 inchNaI(Tl) Işıldama (Scintillation) detektörü kullanılarak gamma ışını spektrometresiyle ölçülmüştür. Şekil 2.2'de NaI (Tl) Sintilasyon dedektörünün görünümü (ORTEC 3 x 3inç) verilmektedir.

Şekil 2.2. NaI (Tl) Sintilasyon dedektör ölçüm cihazı

¹³⁷Cs'den elde edilen 662 keV gamma ışınları için ulaşılabilir en iyi çözünürlük tipik olarak % 8'dir. Detektör, 22 cm çapında ve 7 cm kalınlığındaki silindirik kurşun koruma haznesine yerleştirilmiştir. Sinyal işleme ve veri analiz sistemi bir bilgisayarla eşlenmiş ve yörüngesel analiz ScintiVision programı kullanılarak gerçekleştirilmiştir. Spektrometrenin verimlilik ve enerji kalibrasyonu için IAEA gamma-ışını spektrometresi referans materyalleri olan RGU-1, RGTh-1 ve RGK-1 kullanılarak yapılmıştır. Ölçümlerin kalite güvencesi ise ¹³³Ba, ¹⁰⁹Cd, ⁵⁷Co, ²²Na, ¹³⁷Cs, ⁵⁴Mn ve ⁶⁰Co içeren ve 80 ila 1400 keV arasında foton emisyon pikleri üreten kalibrasyon kaynakları kullanılarak gerçekleştirilen periyodik kalibrasyonlarla ve numune ölçümlerini tekrarlayarak tesis edilmiştir. Tablo 2.3'de bazı radyoaktif elementlerin E_Y ve f_Y değerleri verilmiştir.

Çekirdek	Yarılanma süresi (T _{1/2})	Εγ (KeV)	Fγ (sn ⁻¹)
Am-241	432,70 yıl	59,54	0,390
Co-57	271,80 gün	122,06	0,855
Co-57	271,80 gün	136,47	0,106
Co-60	5,27 yıl	1173,24	0,999
Co-60	5,27 yıl	1173,24	0,999
Cs-137	30,10 yıl	661,67	0,851
Mn-54	312,10 yıl	843,84	0,999
Na-22	1,61 yıl	1274,52	0,999

Tablo 2.3. *Bazı radyoaktif elementlerin* E_{γ} *ve* f_{γ} *değerleri*

Bu çalışmada, uranyum, toryum ve potasyum miktarını saptamak için sırasıyla ²¹⁴Bi'nin 1,76 MeV ve 1,12 MeV pikleri, ²⁰⁸Tl'nin 2,62 MeV pikleri ve ⁴⁰K'nin 1,46 MeV pikleri kullanılmıştır.

2.5. Radyolojik Etkilerin Hesaplanması

Doğal radyonüklidlerinin havadaki emilmiş doz oranına (D) katkısı ²³⁸U, ²³²Th ve ⁴⁰K'nin doğal özgül aktivite konsantrasyonlarına bağlıdır. Yeryüzüne ait gamma radyasyonu ve radyonüklitkonsantrasyonları arasında doğrudan bir ilişki vardır. Eğer bir radyonüklit aktivitesi bilinmekteyse, onun yerden 1 m yükseklikteki maruz kalma dozu oranı aşağıdaki formül kullanılarak hesaplanabilir. Bu araştırmada Zile çevresinden toplanmış 50 toprak numunesindeki doğal ve yapay radyonüklidlerin aktivite konsantrasyonları gamma ışını spektroskopisiyle belirlenmiştir. Bu sonuçlar kullanılarak emilmiş gamma dozu ve yıllık efektif doz hesaplanmıştır. Dış mekân gamma dozları toprak ve kum numunelerinin toplandığı aynı alanlarda taşınabilir G-M tüpüyle ölçülmüş ve bu ölçümler kullanılarak yıllık efektif dozlar tespit edilmiştir. Mevcut çalışmanın sonuçları radyoaktif kirliliğin etkileriyle ilgili öngörüler için kıymetli bir veri tabanı olacaktır.

$$D(nGy/h) = 0.462A_{\rm U} + 0.604A_{\rm Th} + 0.0417A_{\rm K}$$
(2.1)

D yerden 1 m yükseklikteki doz oranı, A_U , A_{Th} ve A_K sırasıyla ²³⁸U, ²³²Th ve ⁴⁰K'nin aktivite konsantrasyonlarıdır. ²³⁸U, ²³²Th ve ⁴⁰K'nin dönüşüm katsayıları sırasıyla 0,462, 0,604 ve 0,0417 Bq kg⁻¹ başına nGy h⁻¹'dır. Yıllık efektif dozları tahmin edebilmek için havadaki emilen dozdan efektif doza yapılan matematiksel dönüşümün katsayısı ve dış mekân kullanımı katsayısı (outdooroccupancyfactor) göz önünde bulundurulmalıdır. UNSCEAR raporlarında, havadaki emilen doz yetişkinlerin uğradığı efektif doza yapılan matematiksel olarak dönüştürülürken dönüşüm katsayısı 0,7 Sv Gy⁻¹, dış mekân kullanımı katsayısı ise 0,2 (ve iç mekân kullanımı katsayısı 0,8) olarak kullanılmıştır [3]. Bu sebeple yıllık efektif doz aşağıdaki denklem kullanılarak hesaplanmıştır;

AEDE(
$$\mu$$
Sv y⁻¹) =D (nGy h⁻¹)×8760 (h year⁻¹)×0,2(veya 0,8)×0,7 Sv/Gy×10⁻³ (2.2)

2.6. Spektrum İçin Pik Alanı Hesaplanması

İncelenilen enerjideki pik grafiğinin sürekli Compton arka-alan fonunun üzerinde kalan alana fotopik alan yani toplam sayım olarak tanımlanır [10-13]. Bu hesaplama biçimi yaygın adıyla Covel yöntemi olarak bilinmektedir. Hesaplama yöntemi temelde ölçülen pik alanının hesaplamasına dayanır. Önce ilgilenilen pikin uç noktalarındaki kanal sayısı belirlenir. Daha sonra, ayrı ayrı her kanalda biriken sayımların toplamından Compton fonunun alanı çıkarılarak net pik alanı hesaplanır.

Grafik 2.1'de belirlenen örnek bir pik kullanılarak alan net alan hesaplamasının nasıl yapılacağı gösterilmiştir.

Grafik 2.1. Gama pik alanının hesaplanmasında kullanılan parametreler

Net Pik Alanı=Toplam Alan -Doğal Fon Alanı

Gerektiğinde tek ve net bir şekilde belirgin (girişimsiz) görünen pikin net alanından, ayrı bir ölçümden alınan seçilen pike ait doğal arka-alan değeri çıkarılır. Bu şekilde

yapılan net alan hesaplanması, belirgin olmayan yani girişim yapan piklere uygulanmaz.

Girişim nedeniyle belirgin olmayan piklerin net alanları bulunabilmesi için daha farklı hesaplama ve işlemlerin yapılmasını gerektirir [3,14-16]. Ölçümler sonucu elde edilen radyonüklitlerin aktivitelerini hesaplamak için dedektör verimi de hesaba katılmalıdır. Aktivite hesaplanırken aşağıdaki ifadeden yararlanılmıştır.

Aktivite = <u>Net Alan</u> Sayım Süresi ×Numune Miktarı×Bolluk×Verim

3. BULGULAR VE TARTIŞMA

Tokat-Zile İlçesinden alınan toprak örneklerinin yapılan spektrometrik analizleri sonucunda, toprak örneklerinde bulunan radyonüklitlerin aktivite konsantrasyonları belirlenmiş olup sonuçlar Tablo 3.1'de verilmektedir. Tablo 3.2'de o bölgelere ait risk parametreleri verilmiştir [3].

Örnek no	U-238	± hata	Th-232	±hata	Cs-137	±hata	K-40	± hata
1	74,95	4,03	59,2	3,71	7,2	0,6	290,1	19,9
2	58,75	6,01	67,6	7,94	5,3	0,5	963,3	56,3
3	31,95	4,6	38,4	6,28	5,1	0,5	405	41,7
4	50,75	6,72	48,5	6,85	5,9	0,6	452,9	47,1
5	32,35	3,18	42,3	4,73	5,7	0,5	334,8	36,5
б	58,3	3,46	52,8	4,62	5,8	0,6	270,2	18,6
7	58,05	5,44	54,7	6,49	6	0,8	436,4	53
8	109,3	8,08	86,7	6,83	5,4	0,6	584,8	49,3
9	62,7	5,23	68,8	5,47	7,3	0,7	369,2	38,7
10	37,25	4,53	41,8	5,68	8,6	1,1	229,8	20,9
11	72,35	5,3	55	3,72	14,2	1,5	395,4	40,8
12	39,8	4,81	36,5	4,43	5,7	0,5	278,8	26,6
13	58,4	5,02	66,9	5,68	6	0,7	404,7	37,5
14	80,35	5,8	87,5	6,6	5	0,5	745,4	50,2
15	73,9	5,66	47,7	3,69	6,2	0,4	518,3	43,5
16	69,3	4,74	46	3,98	7,7	0,7	314,7	33,4
17	73,65	4,53	53,4	3,75	5,9	0,6	477,5	38,6
18	52,6	5,66	60,2	7,2	8,7	1	465,3	48,6
19	42,35	6,01	69,8	10,8	5,7	0,5	754,4	48,4
20	63,6	5,37	56,8	4,35	5,3	0,6	638,6	51,2
21	71,25	4,6	72,8	5,24	9,8	1,1	513,7	53,0
22	34,95	3,82	28,3	3,8	8,3	0,8	235,1	23,4
23	64,25	6,15	54,8	5,26	9,2	0,9	463,7	51,5
24	103,25	7,8	66,6	5,22	8,8	0,9	542,7	53,2
25	79,6	6,29	53,4	4,29	7,8	0,9	571,5	43,3

Tablo 3.1. Zile topraklarındaki radyonüklit aktivite konsantrasyonları

Örnek no	U-238	± hata	Th-232	±hata	Cs-137	±hata	K-40	± hata
26	83,45	5,3	103,0	7,0	5,4	0,5	1185,2	59,9
27	63,7	6,79	71,2	7,56	5,7	0,6	422,2	50,2
28	72,6	5,94	59,3	4,9	5,6	0,5	1132,6	59,6
29	84,1	7,0	68,7	6,15	7,7	0,8	411,2	42,5
30	48,2	5,59	46,5	5,57	6,1	0,7	240,9	38,8
31	38,85	5,94	39	6,05	6,6	0,8	246,9	34,8
32	46,05	3,75	42,8	3,74	10,1	1,1	272,9	31,5
33	64,15	5,73	60,0	5,26	7,5	0,7	262,3	30,4
34	97,85	4,74	103,2	5,36	5,3	0,5	1191,8	51,0
35	78,75	3,75	79,9	5,1	6,1	0,8	421,8	40,4
36	52,9	4,74	46,5	4	13,5	1,2	245,4	27,2
37	63,85	4,89	54,5	4,1	11,6	1,1	356,1	34,8
38	52,3	5,44	49,3	4,8	6,1	0,7	279,2	30,7
39	76,35	4,95	64,2	4,23	9,4	0,8	456,9	39,8
40	86,3	6,3	67	5,07	6,3	0,7	440,6	40,9
41	93,4	5,37	70,6	4,22	10,1	1,2	657,3	40
42	74,15	5,23	55,9	4,6	9,4	0,9	237,2	31,9
43	67,05	6,08	59,5	6,17	9,9	1	352,6	33,4
44	91,7	6,22	78,7	5,59	8,2	0,8	325,7	35,5
45	84,1	5,8	86,5	6,51	8,7	0,9	963,9	47,6
46	95,9	6,15	93,7	5,48	7,5	0,8	356,7	30,9
47	85,65	5,02	61,2	4,45	7,4	0,9	579,3	49,3
48	105,15	6,93	89	5,33	8,9	1	300,6	35,8
49	68,94	6,42	62,82	6,36	6,5	0,6	480,09	41,45
50	66,92	4,44	60,8	4,38	8,48	0,8	478,07	39,47

ORT:	67,93		61,81		7,49		479,08	
ORTANCA	68,00		59,75		7,25		422,00	
STN. SAP.	19,47	1,04	16,88	1,36	2,11	0,23	244,68	10,15

Örn. no	Numune	kütle(gr)	RAEQ (Bq/kg)	Hex≤1	D (nGy/h)	AEDE (μSv/y)	Iγr (Bq/kg	ELCR %
1	Kırlar Köyü	121,2	181,94	0,49	82,70	101,42	1,29	0,000405
2	Saraç Köyü	120,6	229,59	0,62	108,3	132,82	1,71	0,000530
3	Yıldıztepe Köyü 2	151,2	118,05	0,32	55,00	67,45	0,87	0,000269
4	Bayır Köyü	130,6	154,98	0,42	71,80	88,06	1,13	0,000351
5	Yıldıztepe Köyü 1	134,5	118,62	0,32	54,63	66,99	0,86	0,000267
6	Tuğla Toprağı 2	158,6	154,61	0,42	70,27	86,18	1,10	0,000344
7	Ede Köyü	118,2	169,87	0,46	78,24	95,95	1,22	0,000383
8	Tuğla Toprağı 3	122,2	278,31	0,75	127,41	156,26	1,99	0,000623
9	Büyük aköz Köyü 2	126,9	189,51	0,51	86,14	105,64	1,35	0,000421
10	Derebaşı Köyü	152,4	114,72	0,31	52,30	64,14	0,82	0,000256
11	Olukman Köyü	124,6	181,45	0,49	83,56	102,48	1,30	0,000409
12	Karayün 2	131,6	113,46	0,31	52,23	64,06	0,82	0,000256
13	Büyük aköz Köyü 1	133,9	185,23	0,50	84,44	103,56	1,33	0,000413
14	Bazlambaç 2	132,3	262,87	0,71	121,20	148,65	1,91	0,000593
15	Kazankaya 2	144,3	182,02	0,49	84,75	103,94	1,32	0,000415
16	Yıldıztepe 3	142,6	159,31	0,43	73,15	89,72	1,13	0,000358
17	Üçköy 2	128,8	186,78	0,50	86,37	105,92	1,34	0,000423
18	Yeniköy 1	137,9	174,51	0,47	80,33	98,51	1,26	0,000393
19	Bazlambaç 1	133,4	200,25	0,54	93,35	114,49	1,48	0,000457
20	Belpınar Köyü	125,1	194,00	0,52	90,48	110,96	1,42	0,000443
21	Binbaşıoğlu Köyü	118,4	214,91	0,58	98,60	120,93	1,55	0,000483
22	Armutalan Köyü	143,1	93,52	0,25	43,29	53,09	0,67	0,000212
23	Güzelbeyli Köyü	126,9	178,32	0,48	82,39	101,05	1,29	0,000403
24	Alibağı Köyü	116,8	240,28	0,65	110,82	135,91	1,72	0,000542

Tablo 3.2. Zile topraklarındaki risk parametreleri

örn.	Numune	kütle(gr)	RAEQ (Bq/kg)	Hex≤1	D (nGy/h)	AEDE (μSv/y)	Iγr (Bq/kg	ELCR %
25	Göçenli Köyü	147,8	199,97	0,54	93,09	114,17	1,45	0,000456
26	Yaylakent Köyü	150,2	322,00	0,87	150,35	184,39	2,38	0,000736
27	Elmacık Köyü	125,8	198,03	0,53	90,21	110,63	1,42	0,000441
28	Kuruçay Köyü	143,6	244,61	0,66	116,76	143,19	1,83	0,000571
29	Karakuzu Köyü	118,6	214,00	0,58	97,73	119,85	1,52	0,000478
30	Temecük Köyü	156,9	133,24	0,36	60,58	74,30	0,95	0,000296
31	Üçköy 1	136,04	113,63	0,31	52,00	63,77	0,81	0,000254
32	Karayün 1	143,4	128,27	0,35	58,81	72,12	0,92	0,000288
33	Karaşeyh 1	146,9	170,15	0,46	77,04	94,48	1,20	0,000377
34	Kazankaya 1	145,3	337,19	0,91	157,40	193,03	2,48	0,000770
35	Reşadiye Köyü 2	124,7	225,49	0,61	102,41	125,60	1,61	0,000501
36	Çayır Köyü	134,4	138,29	0,37	63,16	77,46	0,98	0,000309
37	İstasyon	139,3	169,20	0,46	77,61	95,19	1,21	0,000380
38	Karaşeyh 2	153,1	144,30	0,39	65,77	80,65	1,03	0,000322
39	Karakaya Köyü	124,2	203,34	0,55	93,39	114,53	1,46	0,000457
40	Yeniköy 2	128,2	216,04	0,58	98,90	121,29	1,54	0,000484
41	Evrenköy Köyü	128,1	244,97	0,66	113,51	139,20	1,77	0,000555
42	Kervansaray Köyü	143,8	172,35	0,47	78,19	95,90	1,21	0,000383
43	Sofular Köyü	147,8	179,29	0,48	81,92	100,46	1,28	0,000401
44	Yaylayolu Köyü	115,5	229,32	0,62	103,73	127,21	1,62	0,000508
45	Tuğla Toprağı 1	141,3	282,02	0,76	131,56	161,34	2,07	0,000644
46	Emirören Köyü	128,04	257,36	0,70	116,00	142,26	1,81	0,000568
47	Hasanağa Köyü	128,8	217,77	0,59	100,91	123,76	1,57	0,000494
48	Reşadiye Köyü 1	133,7	255,57	0,69	115,14	141,20	1,79	0,000563

Tablo 3.2'nin Devamı								
örn.	Numune	kütle(gr)	RAEQ (Bq/kg)	Hex≤1	D (nGy/h)	AEDE (μSv/y)	Iγr (Bq/kg	ELCR %
49	Tuğla toprağı 4	111,59	195,74	0,53	90,01	110,39	1,41	0,000440
50	Tuğla toprağı 5	101,09	190,68	0,52	87,83	107,71	1,37	0,000430
Ortalama:			193,20	0,52	88,92	109,05	1,39	0,000435
Standart sapma:			53,35	0,14	24,90	30,54	0,39	0,000122

Radyum Eşdeğer Aktivitesi, Raeq (Bq/kg) risk değeri için sırasıyla, Kriger (1981) ve dış Tehlike İndeksi (Hex) ≤ 1 için Mathew (1985) değerleri baz alınmıştır [17,18]. Havadan Absorbe Edilen Doz Oranı (D) ve Yıllık Etkin Doz Eşdeğeri (AEDE) risk değerleri için literatür baz alınmıştır [3]. Iyre (Bq/kg) için NEA/OECD-1979 kütüphanesi baz alınmıştır [19]. Doğal yeryüzü ve kozmik kaynaklarından yayılan radyasyon nedeni ile canlıların aldıkları eşdeğer doza en fazla katkıyı ²²²Rn elementi yapmaktadır [20-24]. ²²²Rn, Uranyum bozunmaları sonucu ortaya çıkan bir radyonüklit ürün olduğu için radon konsantrasyonu yerkabuğu üzerinde bölgeden bölgeye değişiklikler gösterir.

3.1. Numunelerdeki Radyasyon Parametrelerinin Hesaplanması

3.1.1. Havadan Absorbe Edilen Doz Oranı (D)

Absorbe edilen doz oranına doğal radyonüklitlerin katkısı doğal radyonüklit olan ²³⁸U, ²³²Th ve ⁴⁰K'ın ve spesifik aktivitelerine bağlıdır. Gama radyasyon seviyesini belirleyen en büyük etki karasal radyonüklitler dengelmektedir. Radyonüklit konsantrasyonları ve karasal gama radyasyonu arasında doğrudan bir bağlantı vardır [1,25-28]. Eğer radyonüklitlerin aktivite konsantrasyonları biliniyor ise yerden 1 m yükseklikte, bunlardan kaynaklanan insanların maruz kaldıkları doz oranları da aşağıdaki formül yardımıyla hesaplanabilmektedir.

$$D(nGy/h) = 0.427A_{\rm U} + 0.662A_{\rm Th} + 0.0432A_{\rm K}$$
(3.1)

Burada D yerden 1 m yükseklikteki doz oranıdır. A_U , A_{Th} ve A_K sırasıyla ²³⁸U, ²³²Th ve ⁴⁰K aktivite konsantrasyonlarıdır. D için Uluslararası tavsiye edilen değer 59 nGy/h olarak belirlenmiştir [28-34].

3.1.2. Yıllık Etkin Doz Eşdeğeri (AEDE)

Yılık etkin doz eşdeğerini hesaplamak için, havadan absorbe edilen doz oranı (D), ev dışında geçirilen süre için dönüşüm katsayısı (0,2) ve yetişkinlerin havadan aldıkları etkin doz için dönüşüm katsayısı (0,7 Sv/Gy) kullanılarak elde edilmiş olan formülden yararlanılır.

AEDE
$$(\mu Sv/y) = D (nGy/h) \times 8760 (h/year) \times 0.2 \times 0.7 Sv/Gy \times 0.001$$
 (3.2)

Dış gama radyasyonundan kaynaklanan yıllık etkin doz eşdeğeri (AEDE) için dünya ortalama değeri 70 µSv/year olarak belirlenmiştir.

3.1.3. Radyum Eşdeğer Aktivitesi (Raeq)

Radyum eşdeğer aktivitesi tehlike indeksi olarak yaygın biçimde kullanılan bir parametredir. Bu parametre aşağıda verilen formül ile hesaplanmaktadır.

$$Ra_{eq}(Bq/kg) = A_{Ra} + 1,43 A_{Th} + 0,077 A_{K}$$
(3.3)

Radyum eşdeğer aktivitesi için tavsiye edilen maksimum değer 370 Bq/kg olarak belirlenmiştir.

3.1.4. Dış Tehlike İndeksi (Hex)

Dış tehlike indeksi H_{ex} Krieger (1981) tarafında önerilen model kullanılarak hesaplanmaktadır [17]. Dış tehlike indeksini hesaplamada kullanılan formül aşağıda verilmektedir.

$$H_{ex} = A_{Ra}/370 + A_{Th}/259 + A_{K}/4810 \le 1$$
(3.4)

3.2. Toprak Örneklerine İlişkin Gamma Spektrometrisi Sonuçları

Nükleer Fizik Laboratuvarında yapılan ölçümlerde toprak numuneleri için ²³⁸U, ²³²Th, ⁴⁰K ve ¹³⁷Cs'nin aktivite konsantrasyonu sonuçları tespit edilmiştir. ²³⁸U, ²³²Th, ⁴⁰K ve ¹³⁷Cs'nin aktivite konsantrasyonları tüm toprak numuneleri için 57-111, 44–107, 298-1030 ve 4–10 Bq kg⁻¹ aralıklarında sırasıyla ortalama değerlerle saptanmışlardır. Literatürde²³⁸U,²³²Th ve ⁴⁰K 'nın aktivite konsantrasyonlarının dünya genelinde ortalama olarak sırasıyla 35, 30 and 400 Bq kg⁻¹ olduğu belirtilmektedir. Sonuçlardan görülebildiği gibi, ²³⁸U, ²³²Th, ⁴⁰K ve ¹³⁷Cs'nin toprak numunelerindeki ortalama aktivite konsantrasyonu değerleri dünya ortalamalarının biraz üzerindedirler [1,34,35].

Grafik 3.1 - 3.4 'te sırasıyla toprak örneklerinin içindeki 238 U, 232 Th, 137 Cs ve 40 K için frekans dağılımları verilmektedir.

Grafik 3.1. Toprak örneklerinin U-238 aktivite konsantrasyonları

Grafik 3.2. Toprak örneklerinin Th-232 aktivite konsantrasyonları

Grafik 3.3. Toprak örneklerinin Cs-137 aktivite konsantrasyonları

Grafik 3.4. Toprak örneklerinin K-40 aktivite konsantrasyonları

Çalışmadaki önreklerin, radyonüklitleri kg başına Becquerel (Bq/kg) cinsinden aktivite derişimleri (A),

$$A = \frac{SH}{\varepsilon \cdot P_{\gamma} \cdot M}$$
(3.5)

bağıntısı ile hesaplandı [36,37]. Burada, SH; sayım hızı (gama-ışını spektrumunda ilgilenilen gama-ışını foto-pikine ait net sayımın, sayım süresine bölümü ile elde edilir), ε ; tam enerjili foto-pik verimi, P γ ; ilgilenilen gama-ışınının yayınlanma ihtimali, M; kg cinsinden örneğin kütlesidir. Grafik 3.5'de yapılan ölçümler sonucu elde edilen bulgulara bağlı olarak hesaplanan risk aktivite konsantrasyonlarının alansal dağılımları karşılaştırılmalı olarak verilmiştir [38-40]. Harita 3.1-3.4 arasında verilen U²³⁸, Th²³², K⁴⁰ ve Cs¹³⁷ maddelerinin aktivite dağılımları renkli fon haritasında iki boyutlu olarak gösterilmiştir. Haritalar incelendiğinde Tokat-Zile ilçesinde çalışılan bölgenin aktivite konsantrasyonu dünya ortalamasına yakın olup risk faktörü sağlık ve risk açısından sorun teşkil etmemektedir.

Grafik 3.5. Risk aktivite konsantrasyonlarının grafiksel olarak karşılaştırılması

Harita 3.1. Tokat-Zile ilçesine ait toprak fonundaki U^{238} in aktivite şiddet dağılımı

Harita 3.2. Tokat-Zile ilçesine ait toprak fonundaki Th²³² in aktivite şiddet dağılım

Harita 3.3. Tokat-Zile ilçesine ait toprak fonundaki K⁴⁰ın aktivite şiddet dağılımı

Harita 3.4. Tokat-Zile ilçesine ait toprak fonundaki Cs¹³⁷ in aktivite şiddet dağılımı

Fotoğraf 3.1'de Tokat-Zile pekmezinde kullanılan toprağın kesiti görülmektedir. Zile/Tokat, Türkiye'de pekmezi ile meşhur bir bölgedir. Asitlenmeyi önlemek amacıyla üretimi sırasında pekmezin içine CaCO içerikli özel bir toprak katılmaktadır.

Fotoğraf 3.1. Tokat-Zile ilçesinin toprak örneğinin görünümü

4. SONUÇLAR

Geleneksel bir gıda maddesi olan pekmez, meyvelerin kaynatılması ile elde edilir ve Türk insanı tarafından bolca tüketilen pekmez çoğunlukla üzümden üretilmektedir. Zile/Tokat, Türkiye'de pekmezi ile meşhur bir bölgedir. Asitlenmeyi önlemek amacıyla üretimi sırasında pekmezin içine CaCO içerikli özel bir toprak katılmaktadır. Bu çalışmada Tokat-Zile ilçesinin, toprak numunelerindeki ²³⁸U, ²³²Th, ⁴⁰K ve ¹³⁷Cs'nin aktivite konsantrasyonları baz alınarak havadaki ortalama emilen gamma dozu oranı 88,92 nGy h⁻¹ lolarak hesaplanmış ve 59 nGy h⁻¹ olarak belirlenmiş olan dünya ortalamasından daha yüksek olduğu görülmüştür. Ancak sağlık açısından ve yaşam kalitesini etkilemeyecek kadar düşüktür. Kapalı ortamda, gama radyasyonuna maruz kalan bireylerin aldıkları yıllık etkin radyasyon doz hızı, havada soğurulan gama ışını dozundan etkin doza dönüşüm kat sayısı 0,7 Sv/Gy alınarak ve bireylerin zamanının % 80'ini kapalı ortamlarda geçirdiği kabul edilerek hesaplanmıştır. Ayrıca, yeryüzüne ait gamma radyasyonundan kaynaklanan toprak numunesindeki ortalama yıllık etkin doz 109,05 µSv y⁻¹ olarak hesaplanmışlardır. Bunu yanı sıra, bu değerlerin dünya ortalaması olan 70 µSv y⁻¹ 'den daha büyük ancak kabul edilebilir en yüksek seviye olan 1 mSv y⁻¹ 'den oldukça düşük olduğu tespit edilmiştir. Çevresel örneklerdeki toprak, su, gıda ve havadaki doğal ve yapay radyonüklitlerin aktivitelerinin belirlenmiş olması ileride doğabilecek herhangi bir Çernobil nükleer kazası benzeri durumunda radyasyon takibi açısından ve insan sağlığına yönelik radyolojik risklerin değerlendirilmesi bakımından çok faydalı olacaktır. Ayrıca, Türkiye'de yüksek dozlu doğal radyoaktivite bölgelerinin belirlenmesinde, düşük doz radyasyon risklerinin daha ayrıntılı değerlendirilebilmesinde ve bunlara bağlı olarak radyasyon sınır değerlerinin tayin edilmesi amacıyla bu tip taban seviye radyasyon düzeylerinin belirlenmesine yönelik yürütülen çalışmalar devam ettirilmelidir.

KAYNAKLAR

- [1] Knoll, F.G. 2000. Radiation Detection and Measurement Third Edition.Wiley, 816, New York.
- [2] Krane, K.S. 2001. Nükleer Fizik 1. Cilt, Palme Yayıncılık, Ankara.
- [3] UNSCEAR, (2000). Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations Publication, New York, USA, 2000.
- [4] Kurnaz, A., Küçükömeroğlu, B., Keser, R., Okumusoglu, N.T., Korkmaz, F., Karahan, G., Çevik, U., 2007. Determination of radioactivity levels and hazards of soil and sediment samples in Firtina Valley (Rize, Turkey). Applied Radiation and Isotopes 65, 1281–1289.
- [5] NCRP 45, 1975. National Council on Radiation Protection and Measurements No.45, Natural Background Radiation in the U.S., Soil Radioactivity, s 54.
- [6] CANBERRA MANUAL, Applications and Technical Reference COTHERN C. R., LAPPENBUSCH W. L., 1983. Compliance Data for The Occurence of Radium and Gross Alpha Particle Activity in Drinking Water Supplies in The U.S. Environmental Protection Agency, Washington DC, 20460.
- [7] TAEK Yayınları, 1988. Türkiye Çernobil Sonrası Radyasyon ve Radyoaktivite Ölçümleri, Türkiye Atom Enerjisi Kurumu Yayınları.
- [8] Değerlier, M. (2007). Adana İli Ve Çevresinin Çevresel Doğal Radyoaktivitesinin Saptanması ve Doğal Radyasyonlarının Yıllık Etkin Doz Eşdeğerlerinin Bulunması. Doktora Tezi, *Çukurova Üniversitesi Fen* Bilimleri Enstitüsü, Adana, 153.
- [9] U.S.Environmental Protection Agency, Exposure Pathways. 12/09/2016 tarihinde, http://www.epa.gov/radiation/understand/pathways.html
- [10] ALPHER P. A., HERMAN R. C., 1953. Origin and Abundance Distribution of Elements, Am. Rew. Nuclear Sci., 2:1.
- [11] Turhan Ş. (2012). Estimation of possible radiological hazards from natural radioactivity in commercially-utilized ornamental and countertops granite tiles. Annals of Nuclear Energy, 44, 34-39.
- [12] Turhan Ş., Atıcı E., & Varinlioğlu A. (2015). Radiometric analysis of volcanic tuff Stones used as ornamental and structural building materials in Turkey and evaluation of radiological risk. Radioprotection, 50(4), 273-280.

- [13] Fukushima Accident. 02/07/2016 tarihinde http://www.world-nuclear. org/info/ Safety-and-Security/Safety-of-Plants/Fukushima-Accident/
- [14] UNSCEAR, (2008). Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations Publication, New York, USA, 2008.
- [15] WHO (World Health Organization), (2009). WHO handbook on indoor radon: A public health perspective. Geneva.
- [16] Verità S., Righi S., Guerra R., & Jeyapandian M. (2009). Radon exhalation rates from zircon sands and ceramic tiles in Italy. Radioprotection, 44(5), 445-451.
- [17] Krieger, R., 1981. Radioactivity of construction materials. Betonwerk. Fertigteil-Tech. 47, 468.
- [18] Beretka, J.,&Mathew P. J.(1985). Natural Radioactivity of Australian Building Materials, Industrial Wastes and by Products, *Health Physics*, 48: 87-95.
- [19] NEA-OECD, (1979), Nuclear Energy Agency. Exposure to radiation from natural radioactivity in building materials. Report by NEA Group Experts, OECD, Paris, France.
- [20] Yousef H. A., El-Farrash A. H., Abu Ela A., & Merza Q. (2015). Measurement of radon exhalation rate in some building materials using nuclear track detectors. World Journal of Nuclear Science and Technology, 5, 141-148.
- [21] Harrison R.M.(2001). Pollution: Causes, Effects and Control. Fourth Edition. The University of Birmingham, UK. 485.
- [22] Doğal radyasyon kaynakları. 04/09/2016 tarihinde http://www.taek.gov.tr/ bilgi-kosesi/184-radyasyonla-birlikte-yasiyoruz/501-dogal-radyasyon kaynaklari. html
- [23] Doğal radyasyon kaynakları. 05/09/2016 tarihinde taek.gov.tr/bilgikosesi/184-radyasyonla-birlikte-yasiyoruz/501-dogal-radyasyonkaynaklari.html
- [24] Dalcı, D., Dörter, G., Güçlü, A.(2005). Radyasyon Hasarlarının Tanı Ve Tedavisi. ÇNAEM Radyasyon Güvenligi Raporları Serisi. No:2, ISBN: 975– 8898–01–9. İstanbul.
- [25] Martin, J.E.(2013). Radyasyon Ve Radyasyondan Korunma Fizigi. Palme Yayıncılık Ankara. 425.

- [26] Yapay radyasyon kaynakları. 08/09/2016 tarihinde http://www.taek.gov.tr/ bilgi-kosesi/184-radyasyonla-birlikte-yasiyoruz/502-yapay-radyasyonkaynaklari. html
- [27] Şenlik, B. (2010). Ankara'da bir üniversite hastanesinde iyonlaştırıcı radyasyon kaynakları ile çalışan sağlık çalışanlarında iyonlaştırıcı radyasyonun olası sağlık etkilerinin belirlenmesi. Uzmanlık tezi. Ankara, 83
- [28] U.S. National Regulatory Commission, Man Made Sources.07/23/2016 tatihinde http:// www.nrc.gov/ about-nrc/ radiation/around-us/ sources/ manmade-sources. html
- [29] Chernobyl Accident 1986. 02/07/2016 tarihinde http://www.worldnuclear.org/info/Safety-and-Security/Safety-of-Plants/Chernobyl-Accident/
- [30] Gönen, E. (2012). Edirne İlinin Çevresel Radyoaktivitesinin Belirlenmesi. Yüksek Lisans Tezi. Tekirdağ Üniversitesi Fen Bilimler Enstitüsü 66.
- [31] Nükleer Enerji Nedir. 27/09/2016 tarihinde http://taek.gov.tr/ogrenci/ bolum1_01. html sayfa
- [32] Martin, J.E. (2013). Radyasyon ve radyasyondan Korunma Fiziği. Palme Yayıncılık, Ankara, 557.
- [33] Powsner, R.A., Powsner, E.R. (2006). Essential Nuclear Medicine Physics. Blackwell Publishing, 38.
- [34] Martin, J.E. (2013). Radyasyon ve radyasyondan Korunma Fiziği. Palme Yayıncılık, Ankara, 560.
- [35] IAEA Technical Reports Series No:295. (1989). ISBN:92-0-125189-0.
- [36] Değerlier, M.(2007).Adana İli Ve Çevresinin Çevresel Doğal Radyoaktivitesinin Saptanması ve Doğal Radyasyonların Yıllık Etkin Doz Eşdeğerlerinin Bulunması. Doktora Tezi, *Çukurova Üniversitesi Fen Bilimler Enstitüsü*, ADANA, 156.
- [37] Kam E.(2004). Tekirdağ'ın Çevresel Doğal Radyoaktivitesinin Tayini. Yüksek Lisans Tezi, *İstanbul Üniversitesi*, İstanbul.112.
- [38] ICRP.(1991). International Commission on RadiologicalProtection, PergamonPress, ICRP Publication 60, Ann. ICRP 21 (1-3), Oxford .
- [39] Gönen, E.(2012). Edirne İlinin Çevresel Radyoaktivitesinin Belirlenmesi. Yüksek Lisans Tezi.*Tekirdağ Üniversitesi Fen Bilimler Enstitüsü*, 66.
- [40] Pak,N.K.(2001).*Tübitak-Bilten.* 4.,Uzay.Tubitak.Gov.tr.

ÖZGEÇMİŞ

Adı Soyadı	:	Muazzez GEZELGE
Doğum Yeri ve Yılı	:	Tokat-Zile / 1989
Medeni Hali	:	Evli
Yabancı Dili	:	İngilizce
E-posta	:	muazzez_fizik@hotmail.com

Eğitim Durumu

Lise	: Zile Dinçerler 75.Yıl Anadolu Lisesi
Lisans	: Kastamonu Üniversitesi Fen Edebiyat Fakültesi Fizik Bölümü

Mesleki Deneyim

İş Yeri	: Özel Eğitim Kurumları / Fizik Öğretmenliği
İş Yeri	: MEB Ücretli Öğretmenlik / Fizik Öğretmenliği