T.C. KASTAMONU ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ABANA -ÇATALZEYTİN / KASTAMONU BÖLGESİ DOĞAL RADYOAKTİVİTE SEVİYESİNİN BELİRLENMESİ

Murat ÖZCAN

Danışman Jüri Üyesi Jüri Üyesi Prof. Dr. M. Atıf ÇETİNER Prof. Dr. Haluk KORALAY Doç. Dr. Aslı KURNAZ

YÜKSEK LİSANS TEZİ FİZİK ANA BİLİM DALI

KASTAMONU – 2018

TEZ ONAYI

Murat ÖZCAN tarafından hazırlanan " Abana- Çatalzeytin / Kastamonu Bölgesi Doğal Radyoaktivite Seviyesinin Belirlenmesi " adlı tez çalışması aşağıdaki jüri üyeleri önünde savunulmuş ve oy birliği ile Kastamonu Üniversitesi Fen Bilimleri Enstitüsü Fizik Ana Bilim Dalı'nda YÜKSEK LİSANS TEZİ olarak kabul edilmiştir.

light Prof. Dr. Mehmet Atıf ÇETİNER Danışman Kastamonu Üniversitesi Jüri Üyesi Prof. Dr. Haluk KORALAY Gazi Üniversitesi Doc. Dr. Aslı KURNAZ Jüri Üyesi Kastamonu Üniversitesi

25/06/2018

Enstitü Müdür V.

Doç. Dr. Mehmet Altan KURNAZ

ТААННÜТNАМЕ

Tez içindeki bütün bilgilerin etik davranış ve akademik kurallar çerçevesinde elde edilerek sunulduğunu, ayrıca tez yazım kurallarına uygun olarak hazırlanan bu çalışmada bana ait olmayan her türlü ifade ve bilginin kaynağına eksiksiz atıf yapıldığını bildirir ve taahhüt ederim.

Murat ÖZCAN

ÖZET

Yüksek Lisans Tezi

ABANA- ÇATALZEYTİN / KASTAMONU BÖLGESİ DOĞAL RADYOAKTİVİTE SEVİYESİNİN BELİRLENMESİ

Murat ÖZCAN Kastamonu Üniversitesi Fen Bilimleri Enstitüsü Fizik Ana Bilim Dalı

Danışman: Prof. Dr. Mehmet Atıf ÇETİNER

İnsanlar; yaşam standartları, yaşadıkları ortamların fiziksel özellikleri ve coğrafi şartlara bağlı olarak değişiklik göstermekle birlikte, sürekli doğal kaynaklardan yayınlanan radyasyona maruz kalmaktadırlar. Doğal radyasyona en büyük katkı tabiatta doğal olarak bulunan ²³⁸U, ²³²Th ile bunların bozunma ürünleri olan ²²⁶Ra, ²²²Rn ve ²³⁵U ile ⁴⁰K gibi radyoaktif elementlerden ileri gelmektedir. Literatürde insanların doğal radyasyonlardan dolayı maruz kaldıkları riskleri belirlemek amacı ile çalışmalar yapılmaktadır. Bu çalışmanın amacı, Kastamonu ili Abana-Çatalzeytin bölgesi toprak ve sahil kumlarındaki taban seviye radyasyon düzeyini belirlemektir. Bu amaçla, alınan 20 adet toprak ve 20 adet sahil kumu örneklerinde doğal (²³⁸U, ²³²Th ve ⁴⁰K) radyoaktivite konsantrasyonları belirlenmiş, elde edilen sonuçlar kullanılarak, soğurulan gama doz oranları ve yıllık etkin doz eşdeğeri hesaplanmış ve radyolojik tehlikeler değerlendirilmiştir. Ayrıca sahil kumlarının tanecik boyutu analizi yapılmış ve 4 farklı boyutta (çakıl, kum, alüvyon ve kil) numuneler elde edilerek bunların doğal (²³⁸U, ²³²Th ve ⁴⁰K) radyoaktivite konsantrasyonları belirlenmistir.

Anahtar Kelimeler: Doğal radyoaktivite, gama dozları, yıllık etkin doz, Abana-Çatalzeytin / Kastamonu

2018, 60 sayfa Bilim Kodu: 202

ABSTRACT

M. Sc. Thesis

DETERMINATION OF NATURAL RADIOACTIVITY LEVEL OF ABANA-ÇATALZEYTIN / KASTAMONU REGION

Murat ÖZCAN Kastamonu University Institute Of Science Department of Physics

Supervisor: Prof. Dr. M. Atıf ÇETİNER

People; they are exposed to continuous natural sources of radiation, although their life standards vary depending on the physical characteristics and geographical conditions of the environment in which they live. The greatest contribution to natural radiation comes from radioactive elements such as ²³⁸U, ²³²Th which are naturally found in nature, and their degradation products²²⁶Ra, ²²²Rn and ²³⁵U and ⁴⁰K. In the literature, studies are being carried out with the aim of determining the risks that people are exposed to from natural radiation. The aim of this study is to determine the level of radiation at the bottom level in the soil and coastal sand of the Abana-Catalzeytin region of Kastamonu province. For this purpose, natural (²³⁸U, ²³²Th and ⁴⁰K) radioactivity concentrations were determined in 20 soil and 20 coastal sand samples taken and the absorbed dose rates and annual effective dose equivalent were calculated and the radiological hazards evaluated using the obtained results. In addition, particle size analysis of coastal sand was performed and samples of 4 different sizes (pebbles, sand, alluvial and clay) were obtained and their natural (²³⁸U, ²³²Th and ⁴⁰K) radioactivity concentrations were determined.

Key Words: : Natural Radioactivity, Gamma Doses, Annual Active Dose, Abana-Çatalzeytin / Kastamonu

2018, 60 pages Science Code: 202

TEŞEKKÜR

Tez çalışmamın hazırlanmasında ve sonuçlandırılmasında beni özveri ile destekleyen ve çalışmalarımın her anında yardımcı olan danışman hocam sayın Prof. Dr. Mehmet Atıf ÇETİNER'e teşekkür ederim. Tezin hazırlanmasındaki çeşitli aşamalarda yardım ve desteklerini aldığım değerli hocam Doç. Dr. Aslı KURNAZ'a ayrıca teşekkürlerimi sunarım.

Yaşamım boyunca her aşamada olduğu gibi bu tez çalışmamda da desteklerini esirgemeyen annem, babam ve kardeşlerime, tez çalışmamda her zaman yanımda olan ve daima bana güç veren değerli eşim Şehriban ÖZCAN ve biricik kızım Elif Eylül ÖZCAN'a sevgilerimi ve en içten teşekkürlerimi sunarım.

Murat ÖZCAN Kastamonu, Haziran, 2018

İÇİNDEKİLER

Sayfa

ÖZET	iv
ABSTRACT	v
TEŞEKKÜR	vi
İÇİNDEKİLER	vii
SİMGELER ve KISALTMALAR DİZİNİ	ix
FOTOĞRAFLAR DİZİNİ	Х
GRAFİKLER DİZİNİ	xi
HARİTALAR DİZİNİ	xii
ŞEKİLLER DİZİNİ	xiii
TABLOLAR DİZİNİ	xiv
1. GENEL BİLGİLER	1
1.1. Giriş	1
1.2. Radyasyon	2
1.3. Radyasyon Çeşitleri	3
1.3.1. İyonlaştırıcı Radyasyon	4
1.3.1.1. Elektromanyetik Radyasyonlar	5
1.3.1.2. Parçacıklı Radyasyon	6
1.3.2. İyonlaştırıcı Olmayan Radyasyonlar	7
1.4. Radyasyon Kaynakları	7
1.4.1. Doğal Radyasyon Kaynakları	8
1.4.1.1. Kozmik Radyasyon	9
1.4.1.2. Karasal Radyasyon	11
1.4.2.Yapay Radyasyon Kaynakları	15
1.5. Gama Işınlarının Madde ile Etkileşimi	16
1.5.1. Fotoelektrik Olay	18
1.5.2. Compton Saçılması	18
1.5.3. Çift Oluşumu	19
1.6. Radyasyon Birimleri	20
1.6.1. Aktivite Birimi	21

1.6.2. Işınlanma Birimi	21
1.6.3. Soğrulmuş Doz Birimi	22
1.6.4. Eşdeğer Doz Birimi	22
2. YAPILAN ÇALIŞMALAR	23
2.1. Çalışma Yapılan Bölgenin Özellikleri	23
2.2. Arazi Çalışmaları	26
2.3. Laboratuvar Çalışmaları	26
2.4. Sahil Kumu Örneklerinin Tanecik Boyutu Analizi için Numunelerin	
Hazırlanması	26
2.5. Gama Spektrometri Yöntemi ve NaI(Tl) Sintilasyon Dedektörü	27
2.5.1. Enerji Kalibrasyonu	31
2.5.2. Verim Kalibrasyonu	32
2.6. Spektrum Analizi	33
2.7. Çevresel Gama Dozu Ölçümleri	33
2.8. Spektrum İçin Pik Alanı ve Aktivite Hesabı	33
2.9. Numunelerdeki Radyasyon Parametrelerinin Hesaplanması	35
2.9.1. Havadan Absorbe Edilen Doz Oranı (D)	35
2.9.2. Yıllık Etkin Doz Eşdeğeri (AEDE)	35
2.9.3. Radyum Eşdeğer Aktivitesi (Ra _{eq})	36
2.9.4. Dış Tehlike İndeksi (H _{ex})	36
2.9.5. Gama Aktivite Konsantrasyonu İndeksi (Ιγ)	36
3. DENEYSEL BULGULAR VE TARTIŞMA	37
3.1. Toprak Örneklerinde ²³⁸ U, ²³² Th ve ⁴⁰ K'nın Aktivite Konsantrasyonları	37
3.2. Sahil Kumu Örneklerinde ²³⁸ U, ²³² Th ve ⁴⁰ K'nın Aktivite	
Konsantrasyonları	40
3.3. Havadaki Gama Dozu Ölçümleri	43
3.4. Toprak ve Sahil Kumu Örnekleri İçin Radyasyon Tehlike	
Parametreleri	46
3.5. Sahil Kumu Örneklerinde Tanecik Boyutu Analizi	48
SONUÇ VE ÖNERİLER	55
KAYNAKLAR	57
ÖZGEÇMİŞ	60

SİMGELER ve KISALTMALAR DİZİNİ

Bq	Becquerel (Radyoaktivite Birimi)
D	Havadaki Soğrulan Doz Hızı
Gy	Gray (Absorbe Edilen Doz Birimi)
H _{ex}	Dış Tehlike Endeksi
I,	Gama Aktivite Konsantrasyonu İndeksi
R _{eq}	Radyum Eşdeğer Aktivitesi
AEDE	Yıllık Etkin Doz Eşdeğeri
Sv	Sievert (Eşdeğer Doz Birimi)
α	Alfa
β	Beta
γ	Gama
MeV	Mega Elektron Volt
KeV	Kilo Elektron Volt
U	Uranyum
Th	Toryum
Κ	Potasyum
с	Işığın Boşluktaki Hızı
Ci	Curie (Radyoaktivite Birimi)
R	Röntgen (Isınlanma Birimi)
Rad	Soğrulan Doz Birimi
Rem	Esdeğer Doz Birimi
υ	Isiğin Frekansı
h	Plank Sabiti
m _e	Elektronun Durgun Kütlesi
J	Joule
μm	Mikrometre
ADC	Analog Sayısal Dönüstürücü
HV	Yüksek Voltaj
IAEA	International Atomic Energy Agency
ICRP	International Commission on Radiological Protection
MA	Yükseltici
MDA	Minimum Dedekte Edilebilir Aktivite
MCA	Çok Kanallı Analizör
PA	Ön Yükseltici
TAEK	Türkiye Atom Enerjisi Kurumu
NaI(Tl)	Talyum Katkılı Sodyum İyodür
SI	Uluslararası Birimler Sistemi
ICRU	Uluslararası Radyasyon Birimleri Komitesi
UNSCEAR	United Nations Scientific Committee on the Effects of Atomic
	Radiation
GPS	Global Positioning System
	v .

FOTOĞRAFLAR DİZİNİ

Sayfa

Fotoğraf 2.1. Çatalzeytin ilçesinin kıyıdan görünümü	25
Fotoğraf 2.2. Abana ilçesinin kıyıdan görünümü	25
Fotoğraf 2.3. NaI(Tl) Sintilasyon dedektörünün görünümü	28

GRAFİKLER DİZİNİ

Sayfa

Grafik 1.1. Doğal ve yapay radyasyon kaynaklarının küresel radyasyon dozuna	
oransal katkıları	8
Grafik 1.2. Dünya genelinde doğal radyasyon kaynaklarından maruz kalınan	
radyasyon dozlarının oransal değerleri	9
Grafik 1.3. Dünya genelinde yapay radyasyon kaynaklarından maruz kalınan	
radyasyon dozları ve oransal değerleri	16
Grafik 2.1. Gama pik alanının hesaplanmasında kullanılan parametreler	34
Grafik 3.1. Toprak örneklerinde ²³⁸ U aktivite konsantrasyonları	39
Grafik 3.2. Toprak örneklerinde ²³² Th aktivite konsantrasyonları	39
Grafik 3.3. Toprak örneklerinde ⁴⁰ K aktivite konsantrasyonları	40
Grafik 3.4. Sahil kumu örneklerinde ²³⁸ U aktivite konsantrasyonları	42
Grafik 3.5. Sahil kumu örneklerinde ²³² Th aktivite konsantrasyonları	42
Grafik 3.6. Sahil kumu örneklerinde ⁴⁰ K aktivite konsantrasyonları	43

HARİTALAR DİZİN

	Sayia
Harita 2.1. Abana-Çatalzeytin ilçelerinin harita görünümü	23
Harita 2.2. Toprak ve sahil kumu numunelerinin koordinatlara bağlı	
lokasyon haritası	24

ŞEKİLLER DİZİNİ

	Sayfa
Şekil 1. 1. Elektromanyetik dalga spektrumu	3
Şekil 1. 2. Radyasyon türlerinin sınıflandırılması	4
Şekil 1. 3. İyonlaştırıcı radyasyonun giriciliği	5
Şekil 1. 4. Kozmik ışınlardan bir saatte alınan radyasyon dozunun yüksekliğe	
göre değişimi	10
Şekil 1. 5. Uranyum serisi	12
Şekil 1. 6. Aktinyum serisi	12
Şekil 1. 7. Toryum serisi	13
Şekil 1. 8. Fotonun madde ile etkileşmesi	17
Şekil 1. 9. Fotoelektrik olay, compton saçılması ve çift oluşumunun atom	
numarası ile enerjiye bağlı etki alanları	17
Şekil 1.10. Radyasyonun eski ve yeni birimleri arasındaki ilişki	21
Şekil 2. 1. NaI(Tl) dedektörünün şematik gösterimi	29
Şekil 2. 2. NaI(Tl) sintilatör dedektörün kurulum şeması	30

TABLOLAR DİZİNİ

Sayfa

Tablo 1. 1.	Dünya genelinde doğal radyasyon kaynaklarından maruz kalınan	
	ortalama radyasyon doz değerleri	9
Tablo 2. 1.	Elek analizi için kullanılan tanecik boyutları	27
Tablo 2. 2.	Standart kaynağın özellikleri	32
Tablo 3. 1.	Toprak örneklerinde ²³⁸ U, ²³² Th ve ⁴⁰ K'nın aktivite	
	konsantrasyonları	38
Tablo 3. 2.	Sahil kumu örneklerinde ²³⁸ U, ²³² Th ve ⁴⁰ K'nın aktivite	
	konsantrasyonları	41
Tablo 3. 3.	Toprak örnekleri için (D) ve (AEDE) değerleri	44
Tablo 3. 4.	Sahil kumu örnekleri için (D) ve (AEDE) değerleri	45
Tablo 3. 5.	Toprak örnekleri için radyasyon tehlike parametreleri	46
Tablo 3. 6.	Sahil kumu örnekleri için radyasyon tehlike parametreleri	47
Tablo 3. 7.	Çakıl örneklerinde ²³⁸ U, ²³² Th ve ⁴⁰ K'nın aktivite	
	konsantrasyonları	48
Tablo 3. 8.	Kum örneklerinde ²³⁸ U, ²³² Th ve ⁴⁰ K'nın aktivite	
	konsantrasyonları	49
Tablo 3. 9.	Alüvyon örneklerinde ²³⁸ U, ²³² Th ve ⁴⁰ K'nın aktivite	
	konsantrasyonları	50
Tablo 3.10.	Kil örneklerinde ²³⁸ U, ²³² Th ve ⁴⁰ K'nın aktivite	
	konsantrasyonları	51
Tablo 3.11.	Sahil kumu örneklerinde tanecik boyutu analizinin karşılaştırmalı	
	²³⁸ U, ²³² Th ve ⁴⁰ K'nın aktivite konsantrasyonları	52
Tablo 4. 1.	²³⁸ U, ²³² Th ve ⁴⁰ K'nın numunelerdeki ortalama konsantrasyonları.	55
Tablo 4. 2.	Ortalama radyasyon tehlike parametreleri	56

1. GENEL BİLGİLER

1.1. Giriş

Radyasyon yaşamımızın bir gerçeğidir. Doğadaki bütün canlılar doğal veya yapay olarak bu radyasyona maruz kalırlar ve bunun büyük bir bölümünü doğal radyasyon kaynakları oluşturmaktadır. Dünyanın oluşumuyla birlikte birçok radyoaktif maddenin uzun ömürlü radyoizotopları halen yerkabuğunda mevcuttur. Güneşteki nükleer reaksiyonlar sonucu meydana gelen ısı ve ışık yaşamımız için gereklidir. Yeryüzündeki bütün yaşam radyasyonun varlığıyla gelişmektedir.

Toprak ve atmosferde bulunan doğal radyoaktif elementlerin çevreye yaydığı radyasyon önlenemez fakat bu radyasyon insan sağlığını önemli ölçüde etkilemez ancak radyasyonun hangi kaynaktan ne kadar süre ile alındığı önemlidir. Bazı bölgelerde toprakların jeolojik yapısı nedeniyle normalin üzerinde radyasyon bulunabilmektedir. Bu da topraktaki uranyum ve toryum gibi doğal radyonüklitlerin varlığından kaynaklanır.

Radyasyonun duyu organlarımızla anlaşılması mümkün olmadığından ölçümleri radyasyona duyarlı cihazlarla yapılabilmektedir. Çevresel radyasyonun ölçülmesindeki temel amaç insanların bu kaynaklardan aldıkları radyasyonun dozu ve oluşturabileceği sağlık risklerinin değerlendirilebilmesidir. Çevresel radyasyonun varlığı bölgeden bölgeye farklılık gösterebileceği gibi birbirine çok yakın bölgeler arasında da farklılıklar gösterebilmektedir.

Çevresel radyasyonun ölçümleriyle ilgili çalışmaların yapılması ve insanların aldıkları radyasyon risklerinin daha doğru tayin edilebilmesi için gerekli veri tabanı oluşturması açısından önemlidir. Ülkemizde ve dünyada çevresel radyasyonun ölçümleriyle ilgili çalışmalar son dönemde artmış ve ileriye dönük radyasyon risklerinin karşılaştırılması ve taban radyasyon verilerinin oluşturması açısından büyük önem arz etmektedir.

Bu amaçla bu çalışmada Kastamonu ili Abana-Çatalzeytin bölgesindeki sahil kumları ve topraktaki radyonüklitlerin aktivite konsantrasyonlarının ölçülerek Türkiye'nin

doğal radyasyon dağılımı veri tabanına katkı oluşturması amaçlanmıştır. Bölge için elde edilen sonuçların insan sağlığı açısından ilgili kuruluşların referans değerleriyle karşılaştırılarak radyasyon güvenliği açısından değerlendirilmesi amaçlanmıştır.

1.2. Radyasyon

Radyasyon, ortamda yüksek hızla hareket eden dalga, parçacık veya foton olarak adlandırılan ve enerji paketleri şeklinde yayılan enerjidir. Maddenin fiziksel ve kimyasal özelliklerini taşıyan en küçük yapı taşı atomdur bütün maddeler atomlardan meydana gelir. Atomlar, çekirdeği oluşturan proton ve nötron ile çekirdeğin etrafında bulunan elektronlardan oluşmaktadır. Proton ve nötron sayıları birbirine eşit elementlere kararlı element denir. Çekirdek büyüdükçe proton-nötron dengesi değişir ve atom kararsız hale dönüşür. Ağır elementler yani çekirdeği büyük elementler kararsız olduklarından parçalanarak daha küçük atomlara dönüşürler ve bu sırada atomun çekirdeğinden parçacık ve enerji dalgaları yayınlanır bu tür atomlara radyoaktif atomlar denir.

Radyasyon doğal ve yapay kaynaklar olmak üzere iki sınıfta incelenir. Bütün canlılar ister istemez doğal radyasyona maruz kalırlar ve bu durum yaşamımızın değişmez bir gerçeğidir. Doğal radyasyon, dış radyasyonu oluşturan karasal ve kozmik radyasyonlar ile vücuttaki radyoaktif elementlerden kaynaklanan iç radyasyonlardan meydana gelmektedir. Canlıların maruz kaldığı radyasyon miktarının % 88'i doğal radyasyonlardan %12'si çoğunluğu tıbbi uygulamalardan kaynaklı yapay radyasyonlardan meydana gelmektedir [1].

Radyasyon yaşam üzerinde olumsuz etkiler meydana getirmesine rağmen tıpta teşhis ve tedavi amaçlı, endüstride, nükleer reaktörlerde ve çeşitli araştırmalarda kullanılmaktadır. Radyasyon kavramının daha iyi anlaşılmasıyla birlikte radyasyonun ölçülmesinin gerekliliği ve radyasyon ile ilgili sınırlayıcı birimler getirilmiştir. Bu tür çalışmaları yapan kuruluşlar; 1928 yılında kurulan Uluslararası Radyolojik Korunma Komitesi (ICRP), 1955 yılında Birleşmiş Milletler teşkilatının bir komitesi olarak kurulan Birleşmiş Milletler Atomik Radyasyonun Etkileri Bilimsel Komitesi (UNSCEAR) ve 1957 yılında Birleşmiş Milletler bünyesinde kurulan Uluslararası Atom Enerjisi Ajansı (IAEA) örnek verilebilir. Ülkemizde ise

bu faaliyetler 1956 yılında kurulan Türkiye Atom Enerjisi Kurumu (TAEK) tarafından yürütülmektedir [2].

1.3. Radyasyon Çeşitleri

Radyasyon ortamda parçacık veya dalga tipi olarak yayılır. Parçacık tipli radyasyon yüksek hızla hareket eden ve belli bir kütleye sahip yüksek enerjili radyasyonlardır. Dalga tipi radyasyonlar ise belli bir enerjiye sahip ancak kütlesiz radyasyonlardır. Dalga tipi radyasyonlar dalga boyları ve buna bağlı frekansları ile enerjilerine göre Şekil 1.1 ' de olduğu gibi elektromanyetik spektrumda sınıflandırılırlar.

Şekil 1.1. Elektromanyetik dalga spektrumu

Radyasyonun madde üzerin meydana getirdiği etkiye göre iyonlaştırıcı radyasyon ve iyonlaştırıcı olmayan radyasyon olarak Şekil 1.2'deki gibi iki sınıfta inceleyebiliriz [3].

Şekil 1.2. Radyasyon türlerinin sınıflandırılması

1.3.1. İyonlaştırıcı Radyasyon

Etkileştiği maddenin atomundan elektron kopararak yüklü iyonlar meydana getiren ve elektromanyetik(dalga) ya da parçacık şeklindeki radyasyondur. Bu tür radyasyonlar önlem alınmazsa bütün canlılar üzerinde zararlı etkiler oluşturabilecek radyasyondur [4]. İyonlaştırıcı radyasyonun türlerinin giriciliği Şekil 1.3'de gösterilmiştir [5].

Şekil 1.3. İyonlaştırıcı radyasyonun giriciliği

İyonlaştırıcı radyasyonları elektromanyetik radyasyonlar ve parçacıklı radyasyonlar olmak üzere Şekil 1.2'deki gibi iki sınıfta inceleyebiliriz.

1.3.1.1. Elektromanyetik radyasyonlar

İyonlaştırıcı etkiye sahip Gama(γ) ve X ışınları elektromanyetik radyasyon olarak adlandırılır. Bu tür radyasyonlar küçük dalga boylu yüksek enerjili radyasyonlardır. Kütlesiz olduklarından nüfuz etme özelliği yüksektir.

Gama(y) ışınları:

Gamanın kaynağı atom çekirdeğidir. Enerji seviyelerindeki farklılıktan dolayı kararsız olan atom çekirdeği yüksek enerjiden düşük enerjiye geçerken alfa ve beta parçacığı yayınladıktan sonra genelde hemen kararlı duruma geçemez uyarılmış durumda kalabilir. Çekirdekte kalan fazla enerji bir foton veya elektromanyetik dalga halinde yayınlanır ve gama ışını adını alır. Gama ışınlarının elektriksel yükleri yoktur enerjileri yüksek dalga boyları kısadır. Menzilleri uzun olup, maddeye nüfuz etme yetenekleri fazla olduğundan zırhlanma yapılması zorunludur. Bundan dolayı çelik, kurşun veya kalın beton tabakası gibi yoğunluğu fazla olan malzemelerle zırhlama yapılabilir. Gama radyasyonu herhangi bir şekilde solunum ya da sindirim yolu ile alınmasa bile doğrudan maruz kalındığında iç organlara ciddi zararlar verebilir. Gama ışınımından sonra proton sayısı ve kütle numarası değişmediği için atom yine aynı kalır yani başka bir atoma dönüşmez [6].

$$\binom{A}{Z}X^* \rightarrow X^A X + \gamma$$

Xışınları:

1895 yılında Alman fizikçi Wilhelm Conrad Röntgen tarafından keşfedilmiştir. X ışınlarına Röntgen ışınları da denir. X ışınları da gama ışınları gibi elektromanyetik ve yüksek enerjili radyasyondur. Fakat X ışınları atomların yörüngeleri arasındaki elektron geçişlerden ortaya çıkan enerji fazlalığından meydana gelir. X ışınları yapay olarak üretilebilmektedir ve bu sayede tıpta teşhis ve tedavi amaçlı yaygın olarak kullanılır.

1.3.1.2. Parçacıklı radyasyonlar

Parçacıklı radyasyonlar, yüksek hızlı ve yüksek enerjili belli bir kütleye sahip radyasyonlardır. Alfa(α), Beta (β) ve Serbest Nötronlar parçacıklı radyasyonlardır.

Alfa (α) parçacıkları:

Alfa parçacığı iki proton ve iki nötrondan oluşmuş bir helyum çekirdeğidir. Elektronları olmadığı için pozitif yüklüdür. Büyük kütle numaralı kararsız atomlar kararlı hale gelebilmek için alfa parçacıkları yayınlarlar. Alfa yayınlayan bir atom kendisinden daha küçük bir elemente dönüşür.

$${}^{A}_{Z}X \longrightarrow {}^{A-4}_{Z-2}Y + {}^{4}_{2}He$$

$$\tag{1.2}$$

Atomun alfa yayınlaması ile çekirdeğinin fiziksel ve kimyasal özelliği değişir. Alfa parçacıkları madde içerisinden geçerken iyonlaşma meydana getirerek tamamen soğurulur ve enerjilerini kaybederler. Alfa parçacıklarını çok ince kalınlıktaki maddelerle durdurmak mümkündür. Bu diğer radyasyonlara göre büyük elektrik yüklerinden dolayıdır. Alfa parçacıklarının ortamdaki menzili çok kısadır bu yüzden dış radyasyon tehlikesi yaratmazlar ancak sindirim, solunum veya başka yollarla vücuda girerse tehlike oluşturur [6].

Atom çekirdeğinin parçalanmasıyla oluşan pozitif ya da negatif yüklü elektronlardır. Alfa parçacıklarına göre daha hafif olduklarından giriciliği yüksektir ve alfaya göre daha hızlı hareket ederler. Beta parçacıkları madde içerisinden geçerken iyonlaşma meydana getirir ve bu tür radyasyonlardan korunmak için ince bir alüminyum levha yeterli olacaktır. [6].

$${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + e^{-} + \overline{\nu} \qquad \beta^{-} \text{ bozunumu}, \quad {}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}Y + e^{+} + \nu \quad \beta^{+} \text{ bozunumu}$$
(1.3)

Serbest nötronlar:

Atomun çekirdeğini meydana getiren iki temel tanecikten biridir. Bunlar çekirdeğin parçalanması ile oluşan yüksüz parçacıklardır. Nötron 1932 yılında James Chadwick tarafından keşfedilmiştir. Nötronlar yüksüz olduklarından bütün maddelere kolayca nüfus edebilirler. Doğrudan iyonlaştırıcı değildirler ancak girdikleri maddelerin protonları ile etkileşimleri sonucu α , β , gama ve X ışınları gibi ışınımlar oluşturarak iyonlaşmaya neden olurlar. Nötronlar giriciliği çok yüksek parçacıklardır ve sadece kalın beton blokları ile durdurulabilirler. [7]

1.3.2. İyonlaştırıcı Olmayan Radyasyon

Enerjileri düşük olduğundan iyonlaştırıcı etkiye sahip değildirler. Elektromanyetik spektrumda Şekil 1.1'de görülen radyo dalgaları, mikrodalgalar, kızıl ötesi ışık, mor ötesi ışık (ultraviyole) ve görünür ışık iyonlaştırıcı olmayan radyasyondur. Elektrik enerjisi ile çalışan her türlü araç ve gereç çevresinde bir elektromanyetik alan oluşturur [6].

1.4. Radyasyon Kaynakları

Dünyamızda yaşayan tüm canlılar, dünyanın oluşumundan itibaren mevcut olan doğal radyoaktif elementlerden yayılan radyasyonla ve dünya dışından gelen kozmik radyasyonla sürekli ışınlanmakta ve radyasyonla iç içe yaşamaktadır. Canlıların maruz kaldığı radyasyonu doğal ve yapay kaynaklar olmak üzere iki sınıfta inceleyebiliriz. Radyasyonun kaynağının % 88'ini doğal kaynaklar %12'sini yapay kaynaklar oluşturmaktadır. Radyasyon kaynaklarının dağılımı Grafik 1.1'de verilmektedir [7].

Grafik 1.1. Doğal ve yapay radyasyon kaynaklarının küresel radyasyon dozuna oransal katkıları

1.4.1. Doğal Radyasyon Kaynakları

Doğal olarak meydana gelen üç çeşit radyasyon vardır. En eski kaynak kozmik radyasyon 13-14 milyar yıl önce evrenin oluşumuyla ile ortaya çıkmıştır. İkincisi 4-5 milyar yıl önce dünyanın oluşumundan itibaren yer kabuğunda bulunan radyonüklitlerden kaynaklanan radyasyonlardır. Üçüncü radyasyon kaynağı kozmik radyasyonun atmosferle etkileşmesi sonucu meydana gelen radyonüklitlerden kaynaklanan radyasyonlardır. Bu kaynaklardan insanlar harici radyasyona ve bu radyasyonu içeren radyonüklitlerin solunum, sindirim ve başka yollarla vücuda girmesi ile dâhili radyasyona maruz kalır [8]. Ayrıca insan vücudunda doğal olarak bulunan ⁴⁰K ve ¹⁴C gibi radyoaktif izotoplardan dolayı da sürekli olarak radyasyona maruz kalırız ve bunun büyük çoğunluğunu ⁴⁰K oluşturur. Canlıların maruz kaldığı doğal radyasyon kaynaklarının dağılımı Grafik 1.2'de verilmiştir. Tablo 1.1'de gösterildiği gibi doğal yolla alınan radyasyonun ortalama yıllık etkin doz oranı 2,4

mSv düzeyindedir. Doğal radyasyonu; kozmik radyasyon ve karasal radyasyon olarak iki aşamada inceleyebiliriz [9].

Grafik 1.2. Dünya genelinde doğal radyasyon kaynaklarından maruz kalınan radyasyon dozlarının oransal değeri

Tablo 1.1. Dünya genlinde doğal radyasyon kaynaklarından maruz kalınan ortalama radyasyon doz değerleri

Işınlanma Kaynağı	Yıllık Etkin Doz Değeri (mSv)		
Ortalama		Değişim Aralığı	
KOZMİK RADYASYON			
 Foton bileşeni 	0,28		
 Nötron bileşeni 	0,10		
KOZMOJENÍK RADYOIZOTOPLAR	0,01		
Toplam	0.30		
i opiani	0,55	0,3 - 1,0	
YERYÜZÜ KAYNAKLI DIŞ IŞINLANMA			
Bina dışı	0,07		
 Bina içi 	0,41		
Toplam	0,48		
		0,3-0,6	
SOLUNUM YOLU İLE IŞINLANMA			
 Uranyum ve Toryum serileri 	0,006		
 Radon (Rn -222) 	1,15		
 Toron (Rn -220) 	0,10		
Toplam	1,26	0,2 - 10	
BESLENME YOLU İLE IŞINLANMA			
• K-40	0,17		
 Uranyum ve Toryum serileri 	0,12		
Toplam	0,29		
		0,2-0,8	
GENEL TOPLAM	2,4	1 – 10	

1.4.1.1. Kozmik radyasyon

Kozmik radyasyon, dünya dışından gelen yüksek enerjili parçacıklar dünyayı sürekli bombardıman etmektedirler. Bir kaynağı güneş olup alfa ve proton yayınlar. Diğer kaynak güneş sisteminin dışından gelen elektron ve protonlardan oluşan galaktik radyasyondur.

Yüksek enerjili parçacıklar atmosfer ile yoğun etkileşimde bulunurlar. Birçoğu atmosferde tutulur ve bir kısmı da yeryüzüne ulaşır. Yeryüzündeki kozmik radyasyon dozunun çoğunluğu müonlar ve elektronlardan meydana gelir [10]. Büyük çoğunluğu yüklü parçacıklardan meydana gelen kozmik radyasyon atmosfere ulaştığında dünyanın manyetik alanının etkisine girer ve bu nedenle ekvatordan kutuplara gidildikçe kozmik radyasyonun yoğunluğu artar ve insanların aldığı radyasyon enlem arttıkça alınan radyasyon düzeyi de artar. Atmosfer radyasyonun tam olmasa da büyük çoğunluğunu zırhlar. Bu nedenle yükseklik ve doz orantılıdır. Yükseklik arttıkça alınan doz miktarı da artacaktır. Deniz seviyesinde yaşayan bir insan bir dağın tepesinde yaşayan ya da havada giden uçaktaki bir yolcuya göre yükseklik farkının minimum olmasından dolayı daha az kozmik radyasyona maruz kalır. Bir pilot deniz seviyesinde çalışan birine göre 20 kat daha fazla radyasyona maruz kalır. Şekil 1.4'de kozmik ışınlardan alınan radyasyonun yüksekliğe bağlı değişimi verilmektedir [9].

Şekil 1.4. Kozmik ışınlardan bir saatte alınan radyasyon dozunun yüksekliğe göre değişimi

Kozmik radyasyon atmosfer ile etkileşmesi sonucu birçok kozmojenik radyonüklit meydana gelir. Bunlardan kozmik nötronlar ¹⁴N ile reaksiyona girerek ¹⁴C üretir. ¹⁴C radyoaktif bir izotoptur ve canlılar tarafından vücuda alınarak iç ışınlanmaya neden olur. Uzun ömürlü (5730 yıl) radyonüklit olan ¹⁴C organik tarihi eserlerin yaş tayinini yapmakta önemli bir araç olarak kullanılır. Kozmik radyasyonun yıllık etkin doğal radyasyon dozuna katkısı yaklaşık 0,4 mSv'dir [11].

1.4.1.2. Karasal radyasyon

Karasal radyasyonlar 4,6 x 10⁹ yıl önce dünyanın oluşumundan itibaren yer kabuğunda bulunan radyonüklitlerden kaynaklanan radyasyondur. Karasal radyoizotopların yarı ömürleri çok uzundur ve bozunuma devam etmektedirler. ⁴⁰K hariç bütün doğal radyoaktif izotoplar ²³⁵U, ²³⁸U ve ²³²Th doğal radyoaktif bozunum serilerinin bir ürünüdür.

- Uranyum serisi ana çekirdeği ²³⁸U (Şekil 1.5)
- Toryum serisi ana çekirdeği ²³²Th (Şekil 1.6)
- Aktinyum serisi ana çekirdeği ²³⁵U (Şekil 1.7)

Ayrıca dördüncü bir aile olan Neptünyum serisi yarı ömrü dünyanın yaşına kıyasla çok küçük olduğu için bu seri tükenmiştir. Ailenin bilinen tek elementi ²⁰⁹Bi'dur.

Uranyum:

Doğada serbest olarak bulunmaz ancak çeşitli elementlerle birleşerek uranyum minerallerini meydana getirir. Uranyum, kaya ve toprak katmanları boyunca düşük konsantrasyonlarda dağılmıştır. Uranyumun doğada ²³⁰U, ²³⁴U, ²³⁵U ve ²³⁸U olmak dört izotopu bulunmaktadır. Bunlardan ²³⁸U'in bulunma oranı %99,28'dir ve genellikle ²³⁴U ile dengededir [12]. ²³⁸U, uranyum serisinin ana elementidir (Şekil 1.5). Aktinyum serisinin ana çekirdeği ²³⁵U'dir (Şekil 1.6). Uranyum serisinin gama spektrumu farklı enerjilerde birçok gama ışını içermesinden dolayı komplekstir ve nicel ölçümler yapabilmek için karakteristik bir piki yoktur. Analizlerde genellikle ²¹⁴Bi'ün 1,76 MeV'lik piki kullanılır [13].

Şekil 1.6. Aktinyum Serisi

Toryum:

Toryum 1828 yılında Jöns Jacob Berzelius tarafından keşfedilmiştir. Uranyum gibi toryumda doğada serbest bulunmaz ve 60 civarında mineral yapısı içerisinde yer almaktadır. Toryum serisinin ana çekirdeği ²³²Th'dir ve yarı ömrü 1,41x 10¹⁰ yıldır. Serinin son ürünü kararlı ²⁰⁸Pb' dir (Şekil 1.7).

Doğal kaynakların jeolojik ve tahlilleri amacıyla 1,461 MeV (K), 1,764 MeV (U) ve 2,615 MeV (Th) karakteristik bu üç gama enerjisi kullanılır.

Şekil 1.7. Toryum Serisi

Potasyum:

⁴⁰K, potasyumun doğal radyoizotopu olup yer kabuğunun %2,6'sını oluşturur ve doğada en bol bulunan radyoaktif izotoptur. Diğer izotoplar ³⁹K ve⁴¹K'dir. Potasyum toprağın önemli bir bileşenidir. Tüm bitki ve hayvan dokularında bulunur. ⁴⁰K çevremiz için iç ve dış radyasyon tehlikesi oluşturur ve en büyük doğal radyoaktivite kaynağıdır. İnsan vücudunun ortalama %0,2'si potasyumdur. 1 gr potasyumun 31 Bq aktivitesi vardır.

Radyum:

1898 yılında Marie ve Pierre Curie tarafından bulunmuştur. Radyum alfa, beta ve gama yayınlayıcısıdır. Berilyum ile karıştırıldığında nötron üretir. Toprakta, kayalarda, yapı malzemelerinde, su ve gıda maddelerinde bulunur. 10 ton uranyumda 1 gram radyum bulunur. Uranyumun radyoaktif parçalanması sonucu ve radyum klorür tuzunun elektrolizi ile elde edilebilir. Atom numarası 88 ve kütle numarası 213'den 230'a kadar yarı ömrü ise 10⁻³ saniyeden 1620 yıla kadar değişen doğal ve yapay 14 radyoaktif izotopu olduğu bilinmektedir. ²²³Ra, ²²⁴Ra, ²²⁶Ra ve ²²⁸Ra radyumun doğal izotoplarıdır [12].

Radon:

1900 yılında Friedrich Einst Born tarafından keşfedilmiştir. Periyodik cetvelde 86. sırada bulunan asal gaz sınıfının en ağır ve tek doğal radyoaktif elementidir. Radon; renksiz, kokusuz ve tatsızdır. Kaya, toprak ve sudaki doğal uranyumun radyoaktif bozunumu sonucu oluşur. Bütün doğal malzemelerde bulunabilir. Tüm yüzey, kaya ve toprak parçaları ile yapı malzemelerinden ortama salınır.

Radonun; ²²²Rn (Radon), ²²⁰Rn (Toron) ve ²¹⁹Rn (Aktinon) olmak üzere üç doğal izotopu vardır. Üç radon izotopu arasında en uzun yarı ömürlü ²²²Rn'dir (3,85 gün). ²²²Rn'nin yarı ömrünün diğer izotoplardan uzun olmasından dolayı atmosferde daha çok bulunur. Radon, toprak, kaya, yeraltı ve yüzey sularında bulunur ve bu yolla atmosfere yayılır [14].

İnsanların maruz kaldığı doğal radyasyon kaynaklarının yarıya yakını radon gazından meydana gelir. Radon gazı yerden atmosfere dağıldığından açık ortamdaki derişimi kapalı ortamdaki derişimin den daha düşüktür. Özellikle binalarda zemindeki toprak ve kayalardan salınan radon zemin çatlakları, asma kat boşlukları, tesisat boşlukları, duvar arası boşluklardan girmekte ve ayrıca yapı malzemelerinde bulunan radon bina içi konsantrasyonu arttırmaktadır. Bu yüzden binaların havalandırmasına dikkat edilerek bu etkiyi azaltabiliriz ayrıca binalardaki radon gazının kontrolü için ülkeler ve uluslararası kuruluşlar limit değerler belirlemişlerdir. Uluslararası Atom Enerji Ajansı (IAEA) bu değeri 200-600 Bq/m³ olarak belirlemiş ülkemizde ise Türkiye Atom Enerjisi Kurumu (TAEK) bu değeri 400 Bq/m³ olarak belirlemiştir [1,9].

1.4.2. Yapay Radyasyon Kaynakları

Yapay radyasyon kaynakları, maruz kalınan radyasyonun yaklaşık %12'sini oluşturur (Grafik 1.1). İnsanoğlu doğal radyasyon kaynaklarının yanında düşükte olsa yapay radyasyona maruz kalır. Gelişen teknoloji ile yapay radyasyonların da süreklilik gösterdiğini söyleyebiliriz. Çünkü yapay kaynaklar birçok işin daha kolay, daha hızlı daha ucuz ve daha basit yapılmasına olanak sağlar ve bunların alternatifi yok gibidir. Yapay kaynaklardan alınan radyasyon bir ölçüde kontrol altına alınabilir. Yapay radyasyon kaynakları olarak;

- Tıbbi Uygulamalar
- Tanısal Radyoloji
- Nükleer Tıp
- Radyoterapi
- Endüstriyel Uygulamalar
- Nükleer Serpinti
- Nükleer Güç Santralleri
- Tüketici Ürünleri

gösterilebilir. Yapay radyasyon kaynakları ve doz oranları Grafik 1.3'deki gibidir [9].

Grafik1.3. Dünya genelinde yapay radyasyon kaynaklarından maruz kalınan radyasyon dozları ve oransal değerleri

1.5. Gama Işınlarının Madde ile Etkileşimi

Gama ve X ışını gibi elektromanyetik radyasyonlar foton olarak adlandırılmaktadır. Fotonlar ışık hızıyla ($c=3x10^8$ m/s) hareket eden yüksek enerjili radyasyonlardır. Fotonlar yüksüz ve kütlesizdirler yüksek enerjili olduklarından madde ile etkileşime girebilirler. Bir fotonun dalga özelliği düşük enerjili ölçümlerde kullanılır. Diğer tüm durumlarda, fotonların tespiti parçacıklar gibi etkileşimlerine dayanır [15].

Gama ışınlarının madde ile etkileşerek enerjilerini kaybettikleri birçok olay olmasına rağmen radyasyon ölçümlerinde temel olan üç tanesi büyük rol oynar. Bunlar;

- Fotoelektrik Olay
- Compton Saçılması
- Çift Oluşumu

etkileşimleridir (Şekil 1.8).

Şekil 1.8. Fotonun madde ile etkileşmesi

Bu olayların hepsinde gama ışını enerjisini etkileştiği ortamın elektronlarına transfer eder. Böylece, sadece gama ışınları etkileşmeleri ile oluşturulan bu elektronlar gelen gamaların doğası hakkında bize bilgi verir (Şekil 1.9).

Şekil 1.9. Fotoelektrik olay, compton saçılması ve çift oluşumunun atom numarası ile enerjiye bağlı etki alanları

Şekilde 1.9'da görüldüğü gibi düşük enerjili ve büyük çekirdek yüklü atomlarda fotoelektrik olay baskındır. Çift oluşumu yüksek enerjili fotonlarda (ortalama olarak

10 MeV'den büyük enerjilerde) ve büyük çekirdek yüklü atomlarda baskındır. Compton saçılması bütün çekirdek yüklü atomlar için mümkün olup orta enerjilerde (10 keV-10 MeV arası enerjilerde) baskındır [16].

1.5.1. Fotoelektrik Olay

Bu olay ilk defa 1887 yılında H. Hertz tarafından gözlemlenmiştir. Ancak bu olayı ilk olarak 1905 yılında Albert Einstein açıklamıştır. Fotonlar kullanılarak metal yüzeylerden elektron sökülmesi olayıdır. Fotoelektrik olay sırasında gama ışınının bütün enerjisi kaybolur fakat bu enerjinin tamamı elektronlara kinetik enerji olarak aktarılmaz ve bir kısmı elektronu uyarmak için kullanılır. Bu elektronlar foto elektron olarak adlandırılır. Foto elektronların kinetik enerjisi (T_e), gelen gama ışınının enerjisi (E γ) elektronu uyarmak için gerekli enerjinin çıkarılması ile elde edilir.

$$T_e = E \gamma - E_b \tag{1.4}$$

Fotoelektrik olay sonucu serbest hale gelen foto elektronlardan boşalan yerleri elektronların doldurmasıyla birlikte karakteristik X ışınları ya da auger elektronları açığa çıkar. Açığa çıkan bu X ışınlarının ikincil elektronlar tarafından soğrularak kinetik enerjiye dönüşmeleri bir anlamda kayıp enerjiyi engellemek olacaktır.

1.5.2. Compton Saçılması

Compton saçılması serbest bir elektron ile yüksek enerjili bir fotonun çarpışması olayıdır. Elektron madde içinde bağlı durumdadır fakat gelen fotonun enerjisi elektronun bağlanma enerjisinden büyük ise bağlanma enerjisi göz ardı edilerek elektronun serbest olduğu düşünülür.

Elektron momentumun korunumu gereği gelen fotonun bütün enerjisini soğuramaz ancak fotonun yönünü ve enerjisini değiştirir. Yani gelen foton enerjisinin bir kısmını elektrona aktarır ve saçılmaya uğrayarak yoluna devam eder [15,17]. Gama ışınının, enerjisinin (E γ) düşmesiyle (E¹ γ) bir açıyla saçılabilir ve bu saçılmayla ortaya çıkan enerji kaybı aşağıdaki denklemde verilmiştir. Bu enerji kaybı elektronlara kinetik enerji olarak aktarılır. Saçılan gama ışınının enerjisi saçılmadan sonra daha azdır ve kristal ile tekrar etkileşime girebilir veya etkileşme yapmadan terk edebilir. Ayrıca gama ışını bir ya da birden fazla compton saçılması yaşayabilir [15,18]. Elektronun kinetik enerjisi; enerji ve çizgisel momentumun korunumu kullanılarak aşağıdaki denklemde gösterildiği gibi hesaplanabilir.

(1.5)

$$T_{e=E} \gamma - E^{1} \gamma = E^{2} \gamma (1 - \cos Q) / mc^{2} + E \gamma (1 - \cos Q)$$
(1.6)

m= Elektronun durgun kütlesi (9,11x10⁻³¹ kg) c = Işığın boşluktaki hızı (3x10⁸ m/s)

1.5.3. Çift Oluşumu

Fotonların enerjilerini kaybettikleri üçüncü önemli olay bir fotonun elektron-pozitron çiftine dönüşmesi olayıdır. Bu olay için gerekli eşik enerjisi 1,02 MeV yani 2mc² 'dir. Enerjisi 1,02 MeV'den büyük olan bir foton yüksek atom numaralı bir levhaya çarptırıldığında foton yok olmakta ve onun yerine bir elektron-pozitron çifti oluşmaktadır. Eğer bir sis odasında çift oluşum gözlenirse ortama manyetik alan uygulandığında elektronlar pozitronlar eşit büyüklükte ve zıt yönlü kavisler yaparak saparlar [19].

Gelen fotonun enerjisi elektron-pozitron oluşumu için gerekli olan enerjiden fazla ise fazla enerji elektron-pozitron çiftinin kinetik enerjisi olur ve aşağıda denklemde gösterildiği gibi hesaplanabilir.

$$E_e^+ + E_e^+ = hv - 2m_e c^2$$
 (1.7)

 E_e^- = Elektronun kinetik enerjisi

 E_e^+ = Pozitronun kinetik enerjisi

h = Planck sabiti $(6,62 \times 10^{-34} \text{ j.s})$

v = Işığın frekansı s⁻¹

 m_e = Elektronun durgun kütlesi (9,11x10⁻³¹ kg)

c = Işığın boşluktaki hızı $(3x10^8 \text{ m/s})$

1.6. Radyasyon Birimleri

Hedef malzemenin birim kütlesi tarafından belli bir sürede soğrulan radyasyonun enerjisine radyasyonun dozu denir. Radyasyonun insan vücudunda oluşturacağı etki; alınış şekli (iç veya dış ışınlanma), radyasyonun çeşidi, süresi ve radyasyonun şiddetine (aktivitesine) bağlı olarak değişir. Radyasyonun cinsinin ve soğrulan dozunun bilinmesinin meydana gelebilecek etkiler bakımından bize bilgi verir.

Uluslararası Radyasyon Birimleri Komitesi (ICRU);

- Aktivite Birimi = Curie (Ci)
- Işınlanma Birimi = Röntgen (R)
- Soğrulan Doz Birimi = Rad
- Eşdeğer Doz Birimi = Rem

Radyasyon birimlerini yukardaki gibi tanımlamıştır. Bu birimler 1986 yılında yerini tüm dünyada birimlerin aynı olması için oluşturulan Uluslararası Birimler Sistemi (SI) kullanılmıştır.

Uluslararası Birimler Sistemi (SI);

- Aktivite Birimi = Becquerel (Bq)
- Işınlanma Birimi = Coulomb/Kilogram
- Soğrulan Doz Birimi = Gray (Gy)
- Eşdeğer Doz Birimi = Sievert (Sv)

olarak belirlemiştir [19]. Radyasyonun eski ve yeni birimleri arasındaki ilişki Şekil 1.10'da verilmiştir.

Büyüklük	SI Birimi Ve Sembolü	Eski Birimler Ve Sembolü	Dönüşüm Faktörü
Aktivite	Becquerel(Bq)	Curie (Ci)	1Ci = 3.7×10 ¹⁰ Bq
Işınlama	Röntgen(C/kg)	Röntgen (R)	1 C/kg = 3876 R
Absorblanan Doz	Gray (Gy) (J/kg)	Rad (rad)	1 Gy = 100 rad
Eşdeğer Doz	Sievert (Sv)	Rem (rem)	1 Sv = 100 rem

Şekil 1.10. Radyasyonun eski ve yeni birimleri arasındaki ilişki

1.6.1. Aktivite Birimi (Bq)

Birim zamanda bozunan çekirdeklerin sayısı aktivite olarak tanımlanır. Saniyede 3,7x10¹⁰ bozunma meydana getiren bir radyoaktif madde miktarı eski birime göre 1 Curie(Ci) olarak tanımlanır. Aktivitenin SI birimi Becquerel'dir. Saniyede bir bozunma meydana getiren radyoaktif madde miktarı 1 Bequerel (Bq) olarak tanımlanır.

1 Bq = 1 Bozunma/saniye 1 Ci = $3,7x10^{10}$ Bq 1 Bq = $2,703x10^{-11}$ Ci

1.6.2. Işınlanma Birimi(C/kg)

Işınlanma birimi X ve gama ışınlarının havayı iyonlaştırma ölçüsü olarak tanımlanır. Eski sistemle ışınlanma birimi röntgen, normal hava koşullarında 0^{0} C ve 1 atm basınçta havanın 1 kilogramında 2,58x 10^{-4} coulomb'luk elektrik yükü değerinde iyon

çifti oluşturan X veya γ radyasyonu miktarı olarak tanımlanmıştır. Işınlanmanın SI birimi olarak coulomb/kilogram belirlenmiştir [21].

 $1 R = 2,58X10^{-4}C/kg$ 1 C/kg = 3876 R

1.6.3. Soğrulmuş Doz Birimi (Gy)

Soğrulmuş doz, bütün ortamlar ve her çeşitteki iyonlaştırıcı radyasyonlar için ifade edilmiştir. Soğrulmuş doz, ışınlanan maddenin birim kütlesi tarafından soğrulan enerjidir. SI birim sisteminde soğrulan doz birimi Gray(Gy)'dir. 1 kilogramlık maddeye 1 J'lük enerji veren radyasyon 1 Gray olarak adlandırılmıştır. Soğrulan dozun eski birimi Rad'dır. Herhangi bir madde gramı başına 100 erg'lik enerji soğurursa buna da 1 Rad denir.

1 Gy = 1 J/Kg 1 Gy = 100 Rad 1 Rad = 10⁻² J/Kg=100 erg/g

1.6.4. Eşdeğer Doz Birimi (Sv)

Çeşitli radyasyon tiplerinin biyolojik maddeler ile etkileşim yolları aynı değildir. Eşit miktarda soğrulmuş dozlar aynı biyolojik etkiye neden olmayabilir. Bu nedenle farklı radyasyon tiplerinin, bir doku ya da organ üzerinde oluşturacağı biyolojik etkiyi inceleyebilmek için eşdeğer doz biriminin kullanılmasına ihtiyaç duyulmuştur. Eşdeğer dozun eski birimi Rem, yeni birimi J/Kg cinsinden ifade edilir ve özel adı Sievert (Sv)'dir.

1 Sv = 100 Rem $1 \text{ Rem} = 10^{-2} \text{ Sv}$ 1 Sv = 1 J/Kg
2. YAPILAN ÇALIŞMALAR

2.1. Çalışma Yapılan Bölgenin Özellikleri

Kastamonu 170 km'lik sahil şeridi ile Karadeniz'e en uzun sahile sahip şehrimizdir. Bu sahil şeridi boyunca batıdan doğuya sırasıyla; Cide, Doğanyurt, İnebolu, Abana, Bozkurt ve Çatalzeytin ilçeleri yer almaktadır. Kastamonu sahili, yeşil ve mavinin buluştuğu ve kıyı şeridi boyunca doğal plaj, koy, liman ve dalış için elverişli yerlerin bulduğu bir bölgeye sahiptir. Karadeniz'e paralel uzanan dağlar nedeniyle ulaşım zordur. Bölgede orman örtüsü ve bitki çeşitliliği oldukça fazladır. Kastamonu tarihi ve kültürel yapısı ile her yıl binlerce yerli ve yabancı turisti ağırlamaktadır [22].

Kastamonu; çalışma bölgemiz olan Abana ilçesine 98 km ve Çatalzeytin ilçesine 102 km mesafededir. Ayrıca sahil kumu numunesi toplama bölgemiz olan Abana-Çatalzeytin ilçeleri arası mesafe ise 22 km'dir. Harita 2.1'de Abana-Çatalzeytin ilçelerinin harita görünümü verilmektedir. Ayrıca Harita 2.2'de toprak ve sahil kumu numunelerinin koordinatlara bağlı hazırlanmış lokasyon haritası verilmiştir [23].

Harita 2.1. Abana-Çatalzeytin ilçelerinin harita görünümü

Harita 2.2. Toprak ve sahil kumu numunelerinin koordinatlara bağlı lokasyon haritası

Çatalzeytin:

Kastamonu ilinin kıyı ilçelerinin en doğusunda Sinop il sınırında yer almaktadır. Koordinatları; 41.954521 kuzey enlemleri, 34.215031 doğu boylamlarıdır. İlçenin yüzölçümü 318 km²'dir. Kuzeyde Karadeniz, batıda Abana ve Bozkurt, güneybatıda Devrekâni, güneyde Taşköprü ve doğuda Sinop ilinin Türkeli ilçesi ile komşudur. Çatalzeytin sınırları içerisindeki en yüksek nokta 1958 metre ve ulaşım oldukça zordur [24]. Fotoğraf 2.1'de Çatalzeytin ilçesinin kıyıdan görünümü verilmektedir.

Fotoğraf 2.1. Çatalzeytin ilçesinin kıyıdan görünümü

Abana:

İlçenin Karadeniz'e olan toplam sahil şeridi 11 km olup, yüzölçümü 33 km²'dir. İlçenin en yüksek yeri 300 metre rakımlıdır. Koordinatları; 41.975833 kuzey enlemleri ve 34.011389 doğu boylamlarıdır. Abana ilçesinin; Batısında İnebolu, doğusunda Çatalzeytin ve güneyinde Bozkurt ilçeleri yer almaktadır. Fotoğraf 2.2'de Abana ilçesinin kıyıdan görünümü verilmektedir [24].

Fotoğraf 2.2. Abana ilçesinin kıyıdan görünümü

2.2. Arazi Çalışmaları

Çalışma bölgelerimiz olan Kastamonu ili Abana-Çatalzeytin ilçelerindeki arazi çalışmaları kapsamında 20 adet toprak ve 20 adet sahil kumu örnekleri alınmıştır. Numunelerin alındığı yerlerin koordinatları, GPS (Global Positioning System) kullanılarak belirlenmiştir. Toprak ve sahil kumu numunelerinin toplanması yüzeyden 15-20 cm derinliğe inilerek yapılmıştır. Numuneler alınırken rastlanan taş, bitki ve kök artıkları, çürümüş ağaç yaprak ve dalları gibi biyolojik kalıntılar ayrılmış ve örneğe sokulmamıştır. Toprak ve sahil kumu numuneleri radyoaktif sayımlara yetecek miktarda (1-1,5 kg) alınmıştır. Numuneler önceden etiketlenmiş temiz, ağızları kapanabilen naylon torbalara konulup laboratuvara getirilmiştir. Ayrıca örnek alınan noktalarda taşınabilir Geiger-Müller sayacı kullanılarak yerden 1 metre yükseklikteki gama dozu ölçümleri de yapılmıştır.

2.3. Laboratuvar Çalışmaları

Çalışmamızda Kastamonu Üniversitesi Fen-Edebiyat Fakültesi Fizik Bölümünün, Nükleer Fizik araştırma laboratuvarı kullanılmıştır. Ayrıca bu çalışma Kastamonu Üniversitesi Bilimsel Araştırma Projeleri (KÜBAP-01/2013-15) tarafından desteklenmiştir. Çalışma bölgesinden toplanan toprak ve sahil kumu numuneleri öncelikle laboratuvarda kurutulmuştur ve daha sonra, numunelerin eleme işlemleri yapılmıştır. Eleme yapılırken sahil kumu numunelerinin tanecik boyutu analizi için ayrı bir eleme işlemi yapılmıştır. Kurutulan ve elenen toprak ve sahil kumu numuneleri ölçümün yapılacağı dedektörün geometrisine uygun biçimde hazırlanan, plastik kutuların içine konulmuş ve kutuların ağızları sıkıca kapatılarak 1 ay süreyle bekletilmiştir. ²³⁸U ve ²³²Th ürünleri arasındaki radyoaktif dengenin oluşması ile numuneler ölçüme hazır hale getirilmiştir.

2.4. Sahil Kumu Örneklerinin Tanecik Boyutu Analizi için Numunelerin Hazırlanması

Çalışma bölgemiz olan Kastamonu ili Abana-Çatalzeytin bölgesinden, Abana ve Çatalzeytin ilçeleri arası 22 km sahil şeridi boyunca belli aralıklarla tanecik boyutu analizimiz için 20 adet yeteri miktarda sahil kumu numunesi toplandı. Toplanan sahil kumu örnekleri laboratuvar ortamında kurutulmuştur. Kurutulan numuneler Tablo 2.1'deki tanecik boyutu düzeyindeki 4 farklı elekten geçirilerek eleme işlemi yapılmıştır [25].

Elek Numarası	Elde Edilen Numunenin	Numunenin Tanecik
	Cinsi	Büyüklüğü
1 Numaralı Elek	Çakıl	200-250 μm
2 Numaralı Elek	Kum	63-200 μm
3 Numaralı Elek	Alüvyon	16-63 μm
4 Numaralı Elek	Kil	<16µm

Tablo 2.1 Elek analizi için kullanılan tanecik boyutları

Elekten geçirilen numuneler boyutlarına göre büyükten küçüğe doğru sırasıyla; çakıl, kum, alüvyon ve kil olarak isimlendirilmiştir. 20 adet sahil kumu numunesinin her biri tek tek 4 farklı boyutlardaki elekten geçirilerek her bir numune için sırasıyla; çakıl, kum, alüvyon ve kil boyutlarında numuneler elde edilmiştir. Daha sonra numuneler vida kapaklı şeffaf patolojik numune kaplarına konularak hassas terazi ile ağırlıkları kaydedildi. Numunelerin radyoaktif dengesinin oluşması için ağızları sıkıca kapatılarak bir ay süre ile bekletilerek ölçüme hazır hale getirilmiştir.

2.5. Gama Spektrometri Yöntemi ve NaI(Tl) Sintilasyon Dedektörü

Çalışmada toprak ve sahil kumu numunelerinin radyoaktivite analizleri için Kastamonu Üniversitesi Fen-Edebiyat Fakültesi Fizik Bölümü, Nükleer Fizik araştırma laboratuvarında bulunan çok kanallı gama spektrometrisi kullanılmıştır.

Dedektör ve diğer elektronik modüllerin uygun kombinasyonu gama spektrometrisi olarak adlandırılır. Gama spektrometrisi, uyarılmış bir atomun çekirdeğinden yayımlanan gama ışınlarının enerjilerine göre ayrılması esasına dayanır. Gama ışını yayan radyoizotopların tanımlanmasında ve aktivitelerinin nicel olarak tespit edilmesinde yaygın olarak kullanılan bir yöntemdir. Gama ışınlarının algılanmasında sintilasyon [NaI(Tl), CsI(Tl), ZnS(Ag), ...] veya yarıiletken [Ge(Li), HPGe, ...]

dedektörler kullanılır. Dedektörün özelliğine göre kullanım yerleri de farklıdır. Yarıiletken dedektörlerin enerji ayırma gücü sintilasyon dedektörlerine göre daha fazla iken, sintilasyon dedektörlerinin sayım verimi yarıiletken bir detektöre göre daha fazladır [26].

Deneysel çalışmamızda toprak ve sahil kumu numunelerinin gama spektrometrik analizi ORTEC 3''x 3'' NaI(Tl) sintilasyon(ışıldama) dedektörü kullanılarak yapılmıştır. Fotoğraf 2.3'de NaI(Tl) sintilasyon dedektörü görünümü verilmektedir [27].

Fotoğraf 2.3. NaI(Tl) sintilasyon dedektörünün görünümü

NaI(Tl) kristali, X ışınları ve gama ışınlarının dedeksiyonunda sıklıkla kullanılmaktadır. Bu kristal ekonomik olmasının yanında iyi bir gama ışını çözünürlüğü sağlar ve çok iyi bir enerji ayırma gücüne sahiptir. NaI(Tl) sintilatöründe; iyodun yüksek atom numarasına sahip olması, foton soğrulma ihtimalini arttırır ve gama ışını dedeksiyonunda yüksek verim elde edilmesini sağlar [28]. NaI sintilatörlerinde foton yayınlanma olasılığını arttırmak için aktivatör olarak talyum kullanılmaktadır. Bu tip sintilatörlere katkılı sintilatörde denir. NaI(Tl) sintilatör dedektöründe dışarıdan gelebilecek katkı radyasyonunu en aza indirmek amacıyla kurşun blokla çevrelenmiştir.

Bir yüklü parçacık veya fotonun sebep olduğu ilk iyonlaştırmadan dolayı kristalin içinde serbest elektronlar meydana gelir. Bu elektronların kristalin atom veya moleküllerine bağlanması işleminde görünür bölgede ışık yayınlar. Sintilatör kendi ışığı için geçirgen olduğundan kristalde yayınlama ve yüzeylerde yansıyan bu ışınlar foto çoğaltıcı tüpün foto katodu üzerine düşerler. Foto katodun yüzeyi, genellikle ince bir sezyum-antimon alaşımı levhadan yapılır. Foto katoda gelen ışınlar burada (fotoelektrik olayla) elektron yayımlanmasına neden olurlar [19]. Bu elektronlar katlı potansiyel farklarla hızlandırılarak BeCu alaşımından yapılmış ve sıra ile yerleştirilmiş dinodlar üzerine çoğalarak düşerler. Foto çoğaltıcı tüplerde elektron çoğalma katsayısı veya kazanç(yani, foto katotlardan yayınlanan her bir elektrona karşılık son çoğaltıcıdan yayınlanan elektron sayısının) 10^6 ile 10^7 civarındadır [29]. Bu elektronlar, anot tarafından toplanır ve puls kaydediciye verilir. Foto çoğaltıcıdan çıkan pulslar, gelen parçacığın enerjisine bağlı olmakla beraber farklı yüksekliktedirler. Şekil 2.1'de NaI(Tl) dedektörünün şematik gösterimi verilmiştir [19].

Şekil 2.1. NaI(Tl) dedektörünün şematik gösterimi

Genel olarak gama spektrometre sistemi NaI(Tl) gibi sintilasyon veya Ge(Li) ve HPGe gibi yarı iletken bir dedektör (D), bir ön yükseltici (PA), bir adet yüksek voltaj filtresine sahip güç kaynağı (HV), yükseltici (MA), analog sinyal dönüştürücü (ADC), çok kanallı analizör (MCA) ve bilgisayardan oluşur [30]. NaI(Tl) sintilatör dedektörün kurulum şeması Şekil 2.2'de verilmiştir.

Şekil 2.2.NaI(Tl) sintilatör dedektörün kurulum şeması

Dedektörün çalışabilmesi için detektöre voltaj verilir. Kaynaktan yayılan radyasyon dedektörle etkileşerek soğrulan enerji ile orantılı akım darbesi meydana getirir. Bu darbe, yükselticiler yardımıyla voltaj darbesine çevrilir, yükseltilir, şekillendirilir ve ADC'ye gelir. Burada bilgiler çok kanallı analizöre(MCA) gelir. Analizörde sayısal hale çevrilen bilgiler ekranda spektrum olarak gözlenir. Bu spektrum veya spektrumla ilgili bilgiler MCA'ya bağlı uygun bir bilgisayarda görülür [31].

Yüksek Voltaj Ünitesi:

Dedektörün yük birikimi için gerekli elektrik alanı oluşturmak üzere, (-) veya (+) 5000 V'a kadar gerilim sağlayan ünitedir.

Preamplifikatör(Ön Yükselteç):

Dedektörde radyasyonun kristal madde ile etkileşmesi sonucu oluşan ilk akım yükü darbesini daha sonra amplifikatörde algılanabilecek hale getiren, akım yükü ile orantılı voltaj darbesine çeviren ünitedir.

Amplifikatör (Yükselteç):

Ön yükselteçle gelen sinyali yükseltmek, yeniden şekillendirmek ve bunun için gerekli gerekli olan gelen sinyal bilgilerini saklamak için kullanılır [31].

Çok Kanallı Analizör (MCA):

Çok kanallı analizör (MCA) genellikle darbe yüksekliği yapan cihazlardır. MCA'da en önemli devre ve bileşen, örneksel/sayısal dönüştürücüdür. Burada, gelen her darbe sayısal hale çevrilir ve genliği ile orantılı olarak bir hafıza kanalına yerleştirilir. Her kanal belli bir enerjiye karşılık gelir ve sayım süresince gelen darbelerin birikmesiyle pikler oluşur [31].

Sayısal/Örneksel Dönüştürücü:

MCA'nın kalbi, elektrik darbesini sayısal niceliğe çeviren sayısal/örneksel dönüştürücü birimi olup, darbe yüksekliğinin analog büyüklüğünü(volt), kanal başına düşen sayısal niceliğe dönüştürür [31].

2.5.1. Enerji Kalibrasyonu

Bilgisayar belleğinde toplanan spektrumların analiz edilebilmeleri için, hangi kanalın hangi enerjiye karşılık geldiğinin bilinmesi gerekir. Böylece numunede bulunan radyoaktif çekirdek türleri bulunabilir. Enerji kalibrasyonu için önceden enerjileri bilinen çekirdeklerden oluşmuş standart kaynaklara ihtiyaç duyulmaktadır. Kalibrasyon için enerjileri 80–1400 keV arasında değişen ¹⁰⁹Cd, ⁵⁷Co, ¹³³Ba, ²²Na, ¹³⁷Cs, ⁵⁴Mn ve ⁶⁰Co'ın piklerini içeren standart nokta kaynaklar kullanılmıştır. Tablo 2.2'de kalibrasyon için kullanılan standart kaynağa ait bilgiler verilmektedir [32].

İzotoplar	Enerji (keV)	Yarı-ömür (gün)	Bolluk (%)
¹³³ Ba	81	3830	33
¹⁰⁹ Cd	88	464	3,72
⁵⁷ Co	122,1	271	86
⁵⁷ Co	136,5	271	11
¹³³ Ba	276,4	3830	6,9
¹³³ Ba	302,8	3830	19
¹³³ Ba	356	3830	62
¹³³ Ba	383,8	3830	8,7
²² Na	511	946	180
¹³⁷ Cs	661,6	11022	85
⁵⁴ Mn	834,8	313	100
⁶⁰ Co	1173,2	1922	100
²² Na	1274,5	946	100
⁶⁰ Co	1332,5	1922	100

Tablo 2.2. Standart kaynağın özellikleri

Enerji kalibrasyonu için dedektöre belli bir mesafede konulan standart kaynağın spektrumu elde edilerek enerjilerin hangi kanallara geldiği tespit edildi.

2.5.2. Verim Kalibrasyonu

Dedektör verimi, dedektörde sayılabilir büyüklükte puls üreten fotonların sayısının, dedektöre gelen fotonların sayısına oranı ya da dedektörde sayılabilir büyüklükte puls üreten fotonların yüzdesi olarak tanımlanır. Dedektörün saydığı gama sayımlarının gerçek değerini bulabilmek için dedektöre ait verim düzeltmesinin yapılması gerekir. Verim tayini için genelde standart kaynaklar kullanılır. Kaynağın şekli farklı olduğunda, kaynak homojen olarak foton yayımlayamayacağından bu durum dedektör verimini etkiler. Bunun için kaynağın en çok fotonları yaydığı bölgesi dedektörün ortasına gelecek şekilde yerleştirilmeli ve kaynak sabitleştirilmelidir [32]. Spektrometrenin enerji ve verim kalibrasyonu için IAEA'nın referans materyalleri RGU-1, RGTh-1 ve RGK-1 kullanılmıştır.

2.6. Spektrum Analizi

Toprak ve sahil kumu numunelerinin analizinde her bir örnek 50000 sn'lik sürelerle sayımı yapılmış ve çalışmada, uranyum, toryum ve potasyum miktarını saptamak için sırasıyla ²¹⁴Bi'nin 1,76 MeV ve 1,12 MeV pikleri, ²⁰⁸Tl'nin 2,62 MeV pikleri ve ⁴⁰K'nin 1,46 MeV pikleri kullanılmıştır. Pik alanı her bir pik için en büyük alan en küçük hatayı verecek şekilde seçilmiştir. Yaptığımız enerji kalibrasyonundan da yararlanarak, çıkan piklerin hangi enerji düzeylerine denk geldiği belirlenip bu enerji düzeylerine karşılık gelen radyoizotoplar bulunmuştur.

2.7. Çevresel Gama Dozu Ölçümleri

Çevresel gama dozu ölçümleri taşınabilir G-M sayacı kullanılarak çalışma bölgesi olan Kastamonu ili Abana-Çatalzeytin ilçelerinden toplanan 20 toprak ve 20 sahil kumu numunesinin toplandığı aynı konumda gerçekleştirilmiştir. Her noktada yerden 1 metre yükseklikte ölçüm yapılmıştır. Gama radyasyon seviyesinin hem yeryüzüne ait hem de kozmik ışın bileşenlerini kapsayan sonuçlar μ Rh⁻¹olarak kaydedilmiştir. Daha sonra bu ölçüm değerleri 8,7 nGy μ Rh⁻¹'lik dönüşüm katsayısı kullanılarak nGyh⁻¹'ye dönüştürülmüştür (Röntgen 'in tanımı itibariyle).

Gama radyasyonlarının ölçüsü bölgedeki toprağın yapısına ve coğrafi yapıya bağlı olarak farklılık gösterir. Gama radyasyonun büyük bölümü karasal kaynaklıdır ve topraktaki radyonüklitlerin konsantrasyonları ile doğru orantılıdır. Buradan hareketle çalışma bölgesinde alınan toprak ve kum örneklerinde saptanan radyoaktivite konsantrasyonları değerlerinden yola çıkılarak hesaplanacak olan gama radyasyonu doz değerlerinin yıllık etkin doz eşdeğerlerinin G-M sayacı ölçümleri ile bulunan değerlerle karşılaştırılması mümkün olmuştur.

2.8. Spektrum için Pik Alanı ve Aktivite Hesabı

İncelenilen enerjideki pik grafiğinin sürekli Compton arka-alan fonunun üzerinde kalan alana foto pik alan yani toplam sayım olarak tanımlanır. Bu hesaplama biçimi yaygın adıyla Covel yöntemi olarak bilinmektedir. Hesaplama yöntemi temelde ölçülen pik alanının hesaplamasına dayanır. Önce ilgilenilen pikin uç noktalarındaki kanal sayısı belirlenir. Daha sonra, ayrı ayrı her kanalda biriken sayımların toplamından Compton fonunun alanı çıkarılarak net pik alanı hesaplanır. Grafik 2.1'de belirlenen örnek bir pik kullanılarak alan net alan hesaplamasının nasıl yapılacağı gösterilmiştir [33].

Grafik 2.1. Gama pik alanının hesaplanmasında kullanılan parametreler

Net Pik Alanı=Toplam Alan -Doğal Fon Alanı

Gerektiğinde tek ve net bir şekilde belirgin (girişimsiz) görünen pikin net alanından, ayrı bir ölçümden alınan seçilen pike ait doğal arka-alan değeri çıkarılır. Bu şekilde yapılan net alan hesaplanması, belirgin olmayan yani girişim yapan piklere uygulanmaz. Girişim nedeniyle belirgin olmayan piklerin net alanları bulunabilmesi için daha farklı hesaplama ve işlemlerin yapılmasını gerektirir [34]. Ölçümlerle birlikte sonucu elde edilen radyonüklitlerin aktivitelerini hesaplamak için dedektör verimi de hesaba katılmalıdır. Aktivite hesaplanırken aşağıdaki ifadeden yararlanılmıştır. Net Alan

Aktivite ₌

Sayım Süresi x Numune Miktarı x Bolluk x Verim

2.9. Numunelerdeki Radyasyon Parametrelerinin Hesaplanması

2.9.1. Havadan Absorbe Edilen Doz Oranı (D)

Absorbe edilen doz oranına doğal radyonüklitlerin katkısı, doğal radyonüklit olan ²³⁸U, ²³²Th ve ⁴⁰K'ın ve spesifik aktivitelerine bağlıdır. Gama radyasyonuna en büyük katkı karasal radyonüklitlerden gelmektedir. Radyonüklit konsantrasyonları ve karasal gama radyasyonu arasında doğrudan bir bağlantı vardır. Eğer radyonüklitlerin aktivite konsantrasyonları biliniyor ise yerden 1 m yükseklikte, bunlardan kaynaklanan insanların maruz kaldıkları doz oranları da aşağıdaki formül yardımıyla hesaplanabilmektedir [35].

$$D (nGy/h) = 0.427A_{\rm U} + 0.662A_{\rm Th} + 0.0432A_{\rm K}$$
(2.1)

Burada D yerden 1 m yükseklikteki doz oranıdır. A_U , A_{Th} ve A_K sırasıyla ²³⁸U, ²³²Th ve ⁴⁰K aktivite konsantrasyonlarıdır. D için Uluslararası tavsiye edilen değer 57 nGy/h olarak belirlenmiştir [36].

2.9.2. Yıllık Etkin Doz Eşdeğeri (AEDE)

Yılık etkin doz eşdeğerini hesaplamak için, havadan absorbe edilen doz oranı (D), ev dışında geçirilen süre için dönüşüm katsayısı (0.2) ve yetişkinlerin havadan aldıkları etkin doz için dönüşüm katsayısı (0,7 Sv/Gy) kullanılarak elde edilmiş olan formülden yararlanılır [36].

AEDE
$$(\mu Sv/y) = D (nGy/h) \times 8760 (h/y) \times 0.2 \times 0.7 Sv/Gy \times 0.001$$
 (2.2)

Dış gama radyasyonundan kaynaklanan yıllık etkin doz eşdeğeri (AEDE) için dünya ortalama değeri 70 µSv/y olarak belirlenmiştir [35].

2.9.3. Radyum Eşdeğer Aktivitesi (Ra_{eq})

Radyum eşdeğer aktivitesi tehlike indeksi olarak yaygın biçimde kullanılan bir parametredir. Bu parametre aşağıda verilen formül ile hesaplanmaktadır [37].

$$Ra_{eq} = A_{Ra} + 1,43_{ATh} + 0,077 A_{K}$$
(2.3)

Radyum eşdeğer aktivitesi için tavsiye edilen maksimum değer 370 Bq/kg olarak belirlenmiştir [38].

2.9.4. Dış Tehlike İndeksi (Hex)

Dış tehlike indeksi H_{ex} Krieger (1981) tarafından önerilen model kullanılarak hesaplanmaktadır. Dış tehlike indeksini hesaplamada kullanılan formül aşağıda verilmektedir.

$$H_{ex} = A_{Ra}/370 + A_{Th}/259 + A_{K}/4810 \le 1$$
(2.4)

2.9.5. Gama Aktivite Konsantrasyonu İndeksi (I_y)

Gama aktivitesi konsantrasyon indeksi (I_{γ}) aşağıdaki formülden yararlanılarak hesaplandı [4,38].

$$I_{\gamma} = A_{\rm U}/150 + A_{\rm Th}/100 + A_{\rm K}/1500$$
(2.5)

Burada A_U, A_{Th} ve A_K sırasıyla ²³⁸U, ²³²Th ve ⁴⁰K'nın spesifik aktivite konsantrasyonları (Bq/kg) değerleridir. Bu formül doğal radyonüklitlerden kaynaklanan γ radyasyonunun tehlike sınırını belirlemek için kullanılmaktadır. I_{γ} için dünya ortalama değeri 1 Bq/kg olarak belirlenmiştir [4,38].

3. DENEYSEL BULGULAR VE TARTIŞMA

Çalışma bölgemiz olan Kastamonu ili Abana-Çatalzeytin bölgesinden alınan 20 adet toprak ve 20 adet sahil kumu örneklerinin gama spektrometrik analizi Kastamonu Üniversitesi Fen-Edebiyat Fakültesi Fizik Bölümü, Nükleer Fizik Araştırma Laboratuvarında bulunan ORTEC 3''x 3'' NaI(Tl) sintilasyon(ışıldama) dedektörü kullanılarak her bir örnek 50000 sn'lik sürelerle sayılmıştır. Örneklerde bulunan ²³⁸U, ²³²Th ve ⁴⁰K doğal radyoaktif izotopların aktivite konsantrasyonları hesaplanmıştır. Daha sonra sonuçlar dünya ortalamalarıyla karşılaştırılmıştır.

3.1. Toprak Örneklerinde ²³⁸U, ²³²Th ve ⁴⁰K'nın Aktivite Konsantrasyonları

Toprak örneklerinde ²³⁸U, ²³²Th ve ⁴⁰K'nın aktivite konsantrasyonları Tablo 3.1'de verilmiştir. ²³⁸U, ²³²Th ve ⁴⁰K'nın aktivite konsantrasyonları sırasıyla 19-79, 46-99 ve 197-927 Bq kg⁻¹ aralıkları ile 55, 66 ve 504 Bq kg⁻¹ ortalama değerlerle hesaplanmıştır. Literatürde ²³⁸U, ²³²Th ve ⁴⁰K'nın aktivite konsantrasyonlarının dünya genelinde ortalama olarak sırasıyla 35, 30 ve 400 Bq kg⁻¹ olduğu bilinmektedir [13,38]. ²³⁸U, ²³²Th ve ⁴⁰K'nın topraktaki aktivite konsantrasyonları dünya ortalamalarının üzerindedir. Toprak örneklerinin ²³⁸U, ²³²Th ve ⁴⁰K'nın aktivite konsantrasyonları dünya

Örnek No	Örnek türü	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)
1	Toprak	19,45±3,54	46,5±13	684,2±50,1
2	Toprak	45,95±4,95	58,8±13	539,8±46,4
3	Toprak	41,2±5,44	78,6±13,5	871,3±50,3
4	Toprak	56±5,37	99,4±13,4	606,2±48,9
5	Toprak	30,85±6,65	49,9±13,1	357,5±49,8
6	Toprak	55,65±5,94	95,2±18,6	680,1±70,5
7	Toprak	55,7±4,03	79,9±13,1	635,6±48,3
8	Toprak	33,95±5,3	61,6±12,9	618,7±48,2
9	Toprak	49,7±3,82	56,3±12,3	207,7±43,9
10	Toprak	53,4±5,44	48,6±12,7	482,6±45
11	Toprak	56,6±4,1	46,1±12,7	332,4±45,5
12	Toprak	63,45±6,51	62,1±14	220,7±48,4
13	Toprak	74±6,93	74,9±17,4	399,1±58,1
14	Toprak	72,05±4,17	75,8±12,8	553,8±44,7
15	Toprak	49±4,74	49,6±13,3	377±48,4
16	Toprak	63,6±4,24	63,2±14,1	197,6±50,3
17	Toprak	61,1±16,75	62,7±13,7	251,5±45,7
18	Toprak	67,95±4,81	76,1±13,1	510,6±45,2
19	Toprak	74,9±3,39	75,6±11,3	634,5±42,1
20	Toprak	79,5±2,05	78,3±10,8	927,9±39,7
ORTA		55,20±2,93	66,96±1,76	504,44±6,43
DÜNYA OH	RTALAMASI	35	30	400

Tablo 3.1. Toprak örneklerinde ²³⁸U, ²³²Th ve ⁴⁰K'nın aktivite konsantrasyonları

Grafik 3.1. Toprak örneklerinde ²³⁸U aktivite konsantrasyonları

Grafik 3.2. Toprak örneklerinde ²³²Th aktivite konsantrasyonları

Grafik 3.3. Toprak örneklerinde ⁴⁰K aktivite konsantrasyonları

3.2. Sahil Kumu Örneklerinde ²³⁸U, ²³²Th ve ⁴⁰K'nın Aktivite Konsantrasyonları

Sahil kumu örneklerinde ²³⁸U, ²³²Th ve ⁴⁰K'nın aktivite konsantrasyonları Tablo 3.2'de verilmiştir. ²³⁸U, ²³²Th ve ⁴⁰K'nın aktivite konsantrasyonları sırasıyla 13-57, 30-53 ve 214-601 Bq kg⁻¹ aralıkları ile 28, 44 ve 374 Bq kg⁻¹ ortalama değerlerle hesaplanmıştır. ²³⁸U, ²³²Th ve ⁴⁰K'nın sahil kumundaki aktivite konsantrasyonları dünya ortalamalarına yakın değerlerde hesaplanmıştır. Sahil kumu örneklerinin ²³⁸U, ²³²Th ve ⁴⁰K'nın sahil kumundaki aktivite konsantrasyonları 3.4-3.6'da verilmiştir.

Örnek No	Örnek türü	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)
1	Sahil Kumu	14,35±2,97	40,3±8,6	409,8±30,9
2	Sahil Kumu	27,75±3,89	47,5±10	513,7±38
3	Sahil Kumu	19,9±5,16	50,7±9,4	601,3±36
4	Sahil Kumu	13,35±4,31	52,4±9,4	512,7±34,4
5	Sahil Kumu	14,5±3,61	45,9±9	422,2±33,4
6	Sahil Kumu	18,6±2,83	45,3±9,2	444,8±32,9
7	Sahil Kumu	41,6±3,54	48,3±9,2	275,5±35
8	Sahil Kumu	17,85±2,12	31,5±7,9	367,2±32,8
9	Sahil Kumu	23,75±3,75	51,5±8,7	287,6±32,4
10	Sahil Kumu	21,85±4,45	30,9±8,9	386,7±34,1
11	Sahil Kumu	16,4±3,11	42,9±8,7	338,9±32,7
12	Sahil Kumu	16,9±3,39	53,4±8,9	380,1±32
13	Sahil Kumu	40,65±2,62	51,4±8,7	251,0±31,0
14	Sahil Kumu	30,15±3,46	36,7±7,7	214,0±28,8
15	Sahil Kumu	42,4±3,39	37,2±7,7	245,8±27,8
16	Sahil Kumu	57,3±3,75	52,1±9,5	369,5±33,9
17	Sahil Kumu	35,3±3,04	42,7±8,4	322,9±31,1
18	Sahil Kumu	34,2±4,31	39,9±9,2	364,4±34,0
19	Sahil Kumu	34,85±3,96	34,6±9,1	373,4±34,2
20	Sahil Kumu	39,1±2,69	38,1±8,3	400,2±31,6
ORTA	LAMA	28,04±0,72	43,67±0,61	374,09±2,34
DÜNYA OF	RTALAMASI	35	30	400

Tablo 3.2. Sahil kumu örneklerinde ^{238}U , ^{232}Th ve ^{40}K 'nın aktivite konsantrasyonları

Grafik 3.4. Sahil kumu örneklerinde ²³⁸U aktivite konsantrasyonları

Grafik 3.5. Sahil kumu örneklerinde ²³²Th aktivite konsantrasyonları

Grafik 3.6. Sahil kumu örneklerinde ⁴⁰K aktivite konsantrasyonları

3.3. Havadaki Gama Dozu Ölçümleri

Havadaki gama dozu ölçümleri G-M sayacı kullanılarak 20 adet toprak ve 20 adet sahil kumu numunelerinin toplandığı koordinatlarda yerinde ölçülerek μ Rh⁻¹ olarak kaydedilmiştir. 2. Bölüm 'de detaylandırılan dönüşüm katsayıları ile havadan absorbe edilen doz oranı (D) ve yıllık etkin doz eşdeğeri (AEDE) hesaplanmıştır. Tablo 3.3 ve Tablo 3.4'de havadan absorbe edilen doz oranı (D) ve yıllık etkin doz eşdeğeri (AEDE) verilmiştir. Toprak örnekleri için (D) 78,3-126,15 nGy/h değerleri arasında ve 100,27 nGy/h ortalama değerinde bulunmuştur. Uluslararası tavsiye edilen değer 57 nGy/h'dir. Yıllık etkin doz eşdeğeri (AEDE) 96,03-154,71 μ Sv/y değerleri arasında ve 122,97 μ Sv/y ortalama değerinde bulunmuştur. (AEDE) için dünya ortalaması 70 μ Sv/y'dir. Sahil kumu örnekleri için (D) 52,2-95,7 nGy/h değerleri arasında ve 72,65 nGy/h ortalama değerinde bulunmuştur.. Yıllık etkin doz eşdeğeri (AEDE) 64,02-117,37 μ Sv/y değerleri arasında ve 89,09 μ Sv/y ortalama değerinde bulunmuştur [35,36].

Örnek No	Örnek türü	Enlem	Boylam	μRh ⁻¹	D (nGy/h)	AEDE (μSv/y)
1	Toprak	41.94308	34.21798	10	87	106,70
2	Toprak	41.93533	34.19540	11	95,7	117,37
3	Toprak	41.91955	34.17683	9	78,3	96,03
4	Toprak	41.91487	34.16104	11	95,7	117,37
5	Toprak	41.89436	34.14399	9	78,3	96,03
6	Toprak	41.87569	34.11735	14,5	126,15	154,71
7	Toprak	41.86040	34.09282	14	121,8	149,38
8	Toprak	41.85429	34.09026	11	95,7	117,37
9	Toprak	41.87878	34.13050	10	87	106,70
10	Toprak	41.92408	34.18289	13	113,1	138,71
11	Toprak	41.96588	34.13287	11	95,7	117,37
12	Toprak	41.96848	34.10083	10	87	106,70
13	Toprak	41.97782	34.04952	11	95,7	117,37
14	Toprak	41.95937	34.02070	13	113,1	138,71
15	Toprak	41.95433	34.02341	13	113,1	138,71
16	Toprak	41.94538	34.03797	12	104,4	128,04
17	Toprak	41.92469	34.07133	11	95,7	117,37
18	Toprak	41.89909	34.09922	12	104,4	128,04
19	Toprak	41.85316	34.08901	12	104,4	128,04
20	Toprak	41.82213	34.09107	13	113,1	138,71
		ORTALA	MA		100,27	122,97

Tablo 3.3. Toprak örnekleri için (D) ve (AEDE) değerleri

Örnek No	Örnek türü	Enlem	Boylam	μRh ⁻¹	D (nGy/h)	AEDE (µSv/y)
1	Sahil kumu	41.97972	33.99094	9	78,3	96,03
2	Sahil kumu	41.97963	33.96767	8,5	73,95	90,69
3	Sahil kumu	41.97886	33.98362	9,5	82,65	101,36
4	Sahil kumu	41.98028	34.00789	8	69,6	85,36
5	Sahil kumu	41.97943	34.02641	8	69,6	85,36
6	Sahil kumu	41.98051	34.04540	7	60,9	74,69
7	Sahil kumu	41.96092	34.17066	7	60,9	74,69
8	Sahil kumu	41.95505	34.20846	6	52,2	64,02
9	Sahil kumu	41.95409	34.21988	8	69,6	85,36
10	Sahil kumu	41.95401	34.22144	7	60,9	74,69
11	Sahil kumu	41.95386	34.22240	9	78,3	96,03
12	Sahil kumu	41.95365	34.23156	6	52,2	64,02
13	Sahil kumu	41.95468	34.22690	10	87	106,70
14	Sahil kumu	41.95433	34.22528	10	87	106,70
15	Sahil kumu	41.95417	34.22292	9	78,3	96,03
16	Sahil kumu	41.98065	34.04592	9	78,3	96,03
17	Sahil kumu	41.97988	34.04388	8	69,6	85,36
18	Sahil kumu	41.97976	34.04901	11	95,7	117,37
19	Sahil kumu	41.97911	34.03301	9	78,3	96,03
20	Sahil kumu	41.98038	34.01497	8	69,6	85,36
	0	RTALAMA			72,65	89,09

Tablo 3.4. Sahil kumu örnekleri için (D) ve (AEDE) değerler

3.4. Toprak ve Kum Örnekleri İçin Radyasyon Tehlike Parametreleri

Toprak ve sahil kumu örnekleri için radyasyon tehlike parametreleri Tablo 3.5 ve Tablo 3.6'da verilmiştir. Radyum eşdeğer aktivitesi (Ra_{eq}), dış tehlike indeksi (H_{ex}) ve gama aktivite konsantrasyonu indeksi (I_{γ}) toplanan sahil kumu ve toprak örneklerinin Bölüm 2'de detaylandırılan aktivite konsantrasyonlarından hesaplanmış parametrelerdir.

Örnek No	Örnek türü	D (nGy/h)	AEDE (µSv/y)	D (nGy/h)	AEDE (μSv/y)	Ra _{eq} (Bq/kg)	H _{ex} (≤ 1)	Iγr Bq/kg
		Yerinde	Ölçüm		Topra	ktan Hesap	anan	
1	Toprak	87	106,70	68,65	84,19	138,63	0,37	1,05
2	Toprak	95,7	117,37	81,87	100,40	171,60	0,46	1,25
3	Toprak	78,3	96,03	107,27	131,55	220,69	0,60	1,64
4	Toprak	95,7	117,37	115,90	142,14	244,82	0,66	1,77
5	Toprak	78,3	96,03	61,65	75,61	129,73	0,35	0,94
6	Toprak	126,15	154,71	116,17	142,47	244,15	0,66	1,78
7	Toprak	121,8	149,38	104,14	127,71	218,90	0,59	1,59
8	Toprak	95,7	117,37	82,00	100,57	169,68	0,46	1,25
9	Toprak	87	106,70	67,47	82,74	146,20	0,39	1,03
10	Toprak	113,1	138,71	75,82	92,99	160,06	0,43	1,16
11	Toprak	95,7	117,37	69,05	84,68	148,12	0,40	1,06
12	Toprak	87	106,70	77,74	95,34	169,25	0,46	1,19
13	Toprak	95,7	117,37	98,42	120,71	211,84	0,57	1,51
14	Toprak	113,1	138,71	104,87	128,61	223,09	0,60	1,61
15	Toprak	113,1	138,71	70,04	85,90	148,96	0,40	1,07
16	Toprak	104,4	128,04	77,53	95,09	169,19	0,46	1,19
17	Toprak	95,7	117,37	78,46	96,23	170,13	0,46	1,20
18	Toprak	104,4	128,04	101,45	124,42	216,09	0,58	1,55
19	Toprak	104,4	128,04	109,44	134,22	231,86	0,63	1,68
20	Toprak	113,1	138,71	125,87	154,36	262,92	0,71	1,93
ORTA	LAMA	100,27	122,97	89,69	110,00	189,79	0,51	1,37

Tablo 3.5. Toprak örnekleri için radyasyon tehlike parametreleri

Ayrıca havadan absorbe edilen doz oranı (D) ve yıllık etkin doz eşdeğeri (AEDE) hesaplanmış ve yerinde yapılan ölçüm değerleriyle karşılaştırılmıştır. Radyum eşdeğer aktivitesi (Ra_{eq}) için tavsiye edilen maksimum değer 370 Bq/kg olarak belirlenmiştir ve gama aktivite konsantrasyonu indeksi (I_{γ}) dünya ortalama değeri 1 Bq/kg'dır [37,38].

Örnek No	Örnek türü	D (nGy/h)	AEDE (μSv/y)	D (nGy/h)	AEDE (μSv/y)	Ra _{eq} (Bq/kg)	H _{ex} (≤ 1)	Iγr Bq/kg
		Yerinde	e Ölçüm		Toprak	tan Hesapla	nan	
1	Sahil kumu	78,3	96,03	50,51	61,94	103,53	0,28	0,77
2	Sahil kumu	73,95	90,69	65,49	80,31	135,23	0,37	1,00
3	Sahil kumu	82,65	101,36	68,04	83,44	138,70	0,37	1,04
4	Sahil kumu	69,6	85,36	62,54	76,70	127,76	0,34	0,95
5	Sahil kumu	69,6	85,36	54,82	67,23	112,65	0,30	0,84
6	Sahil kumu	60,9	74,69	57,15	70,08	117,63	0,32	0,87
7	Sahil kumu	60,9	74,69	61,64	75,59	131,88	0,36	0,94
8	Sahil kumu	52,2	64,02	44,34	54,38	91,17	0,25	0,68
9	Sahil kumu	69,6	85,36	56,66	69,49	119,54	0,32	0,87
10	Sahil kumu	60,9	74,69	46,49	57,02	95,81	0,26	0,71
11	Sahil kumu	78,3	96,03	50,04	61,37	103,84	0,28	0,76
12	Sahil kumu	52,2	64,02	58,99	72,34	122,53	0,33	0,90
13	Sahil kumu	87	106,70	62,23	76,32	133,48	0,36	0,95
14	Sahil kumu	87	106,70	46,41	56,92	99,11	0,27	0,71
15	Sahil kumu	78,3	96,03	53,35	65,43	114,52	0,31	0,82
16	Sahil kumu	78,3	96,03	74,92	91,88	160,25	0,43	1,15
17	Sahil kumu	69,6	85,36	57,29	70,26	121,22	0,33	0,88
18	Sahil kumu	95,7	117,37	56,76	69,61	119,32	0,32	0,87
19	Sahil kumu	78,3	96,03	53,92	66,12	113,08	0,31	0,83
20	Sahil kumu	69,6	85,36	59,21	72,61	124,40	0,34	0,91
ORT	ALAMA	72,65	89,09	57,04	69,95	119,28	0,32	0,87

Tablo 3.6. Sahil kumu örnekleri için radyasyon tehlike parametreleri

3.5. Sahil Kumu Örneklerinde Tanecik Boyutu Analizi

Çalışma bölgesinden toplanan sahil kumu örnekleri Bölüm 2'de detaylandırılan işlemlerden geçirilerek sırasıyla boyutları büyükten küçüğe doğru çakıl, kum, alüvyon ve kil boyutunda numuneler elde edilerek her bir numune için ²³⁸U, ²³²Th ve ⁴⁰K'nın aktivite konsantrasyonları hesaplanmıştır. Çakıl boyutundaki numuneler Tablo 3.7'de, kum boyutundaki numuneler Tablo 3.8'de, alüvyon boyutundaki numuneler Tablo 3.9'da ve kil boyutundaki numuneler Tablo 3.10'da verilmiştir. Ayrıca örneklerin çakıl, kum, alüvyon ve kil boyutunun Tablo 3.11'de kendi içinde karşılaştırmalı olarak ²³⁸U, ²³²Th ve ⁴⁰K'nın aktivite konsantrasyonları verilmiştir.

Örnek	Örnek türü	²³⁸ U	²³² Th	⁴⁰ K
No		(Bq/kg)	(Bq/kg)	(Bq/kg)
1	Çakıl			
2	Çakıl	42,25±2,33	34±9,1	358±32,5
3	Çakıl	31,95±3,39	36,6±8,2	424,3±31,1
4	Çakıl	36,8±3,04	31,1±8,9	401,2±32,8
5	Çakıl	32,85±3,89	31±8,3	302,3±29,4
6	Çakıl	37,65±2,83	48,9±8,6	315,7±30,8
7	Çakıl	67,2±3,61	63,5±12,5	328,5±44,2
8	Çakıl	56,8±4,53	60,8±11,8	312,2±41,4
9	Çakıl	46,75±2,55	46,1±8,7	256,2±31,7
10	Çakıl	38,8±3,82	45,5±8,7	167,4±29
11	Çakıl	45,8±2,4	40,8±8,8	280,3±32,2
12	Çakıl	30,9±2,4	34±8,7	251,9±30,2
13	Çakıl	47,5±2,76	46,6±8,9	322±31,7
14	Çakıl	37,3±3,04	33,5±7,8	227,2±27,8
15	Çakıl	43,95±3,32	38,5±8,5	245±28,5
16	Çakıl	44,05±4,53	50,9±9,9	328,9±33,8
17	Çakıl	45,4±3,18	44±9,2	337,2±32,9
18	Çakıl	46,2±2,76	48,2±9,7	351,1±33
19	Çakıl	55,7±2,83	52,5±9,9	388,6±32,5
20	Çakıl	53,65±4,24	51,1±10,2	468,1±36,8
ORTA	LAMA	44,29±0,70	44,08±1,19	319,27±4,13

Tablo 3.7. Çakıl örneklerinde ²³⁸U, ²³²Th ve ⁴⁰K'nın aktivite konsantrasyonları

Örnek No	Örnek türü	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)
1	Kum			
2	Kum	36±3,46	43,5±9,9	373±34,8
3	Kum	36,2±4,53	45,8±9,6	320,8±31,6
4	Kum	39,25±4,17	39,6±9,6	363,7±34,4
5	Kum	46,45±3,89	50,7±10,2	352,5±34,5
6	Kum	49,3±3,04	57,6±10	383,6±37,3
7	Kum	57,25±3,39	43,5±10,7	244,6±35,7
8	Kum	75,35±7,92	97,1±19,4	515,2±71,3
9	Kum	51,6±4,53	43,7±10,1	244,8±32,9
10	Kum	52,7±2,47	50,3±9,4	252,9±31,5
11	Kum	46,85±4,03	45,7±9,3	230,5±32,3
12	Kum	149,1±12,52	148,1±38,8	611,3±126,2
13	Kum	378,85±41,15	365±85,4	1235,8±285,7
14	Kum	58,5±3,18	48,2±9,8	175,8±30,7
15	Kum	45,65±2,97	40,7±9	235,4±32,1
16	Kum	46,6±4,53	42,1±9,8	427±35,6
17	Kum	67,8±6,51	75,9±17,2	444±59,8
18	Kum	40,05±3,61	47,2±9,3	394,9±34,1
19	Kum	45,85±3,32	42,2±9	332,1±32,8
20	Kum	48,9±3,96	54,7±10,2	498,3±36
ORTAI	LAMA	72,22±8,71	72,72±18,17	401,91±60,28

Tablo 3.8. Kum örneklerinde ²³⁸U, ²³²Th ve ⁴⁰K'nın aktivite konsantrasyonları

Örnek	Örnek türü	²³⁸ U	²³² Th	⁴⁰ K
No		(Bq/kg)	(Bq/kg)	(Bq/kg)
1	Alüvyon			
2	Alüvyon	44,8±2,55	39,9±9,7	423,3±35,4
3	Alüvyon	61,4±4,24	52,7±9,6	423,3±34,9
4	Alüvyon	34,85±3,39	31,9±9,5	404,2±34,1
5	Alüvyon	40,35±3,39	40,2±10,1	429,7±36,6
6	Alüvyon	45,85±2,97	57,1±9,7	281,6±34,3
7	Alüvyon	51,9±4,24	41,5±9,6	205,3±33,8
8	Alüvyon	127,65±8,87	123±21	397,1±70,3
9	Alüvyon	43,45±2,97	46±9,3	238±33
10	Alüvyon	38,1±2,62	55,9±9,5	225,5±34
11	Alüvyon	48,65±4,1	40,3±9	363,6±36,1
12	Alüvyon			
13	Alüvyon	161,87±17,04	143,6±36,9	731,6±120,7
14	Alüvyon	85,9±6,29	77±16,4	305±53,9
15	Alüvyon	39,5±2,26	42,2±9,8	200,7±32,4
16	Alüvyon	46,65±3,89	54,8±10,5	329,6±37
17	Alüvyon	50,3±3,25	48,2±9,5	327,5±34,5
18	Alüvyon			
19	Alüvyon	40,65±2,76	47,9±9,9	393,8±35,1
20	Alüvyon	52,45±3,46	45,7±9,7	458,4±36,8
ORTA	LAMA	59,67 ±3,57	45,7±7,05	361,07±22,16

Tablo 3.9. Alüvyon örneklerinde ^{238}U , ^{232}Th ve ^{40}K 'nın aktivite konsantrasyonları

Örnek	Örnek türü	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)
N01	Kil			
1	N 11			
2	Kil	37,2±3,82	46,9±9,5	346,8±33,7
3	Kil	176,85±15,56	184,8±47,3	1469±168,7
4	Kil	92±6,08	105,5±21,8	749,1±75,1
5	Kil	160,1±12,9	163,3±40,5	797,5±149,5
6	Kil	130,3±7,14	112,3±23,5	604,8±86,2
7	Kil	57,9±3,32	49,2±10	205,5±34,1
8	Kil	106,9±4,53	95±17,8	358±60,7
9	Kil	110,6±9,76	107,8±21,1	383,8±72,8
10	Kil	48,65±3,32	45±9,5	236,4±34,2
11	Kil	109,45±6,15	107,1±21,2	517,3±78,2
12	Kil	268,2±18,17	250,2±50,1	745,6±163,6
13	Kil	304,65±21,35	317,9±67,4	1128,4±240,7
14	Kil	126,9±14,5	178,1±28,2	696±97,5
15	Kil	122±6,29	119,2±26,7	354,2±87,3
16	Kil			
17	Kil	136,6±9,48	131,3±22,5	658,9±78,5
18	Kil			
19	Kil	100,95±8,13	94,9±21,4	503,6±71,8
20	Kil	110,1±8,2	117,6±22,5	721,8±81
ORTA	LAMA	129,37±5,39	130,95±15,67	616,28±55,34

Tablo 3.10. *Kil örneklerinde* ^{238}U , ^{232}Th ve ^{40}K 'nın aktivite konsantrasyonları

	11 1111 1111						
2 NOLU SAHİL KUMU	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)	3 NOLU SAHİL KUMU	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)
ÇAKIL	42,25±2,33	34±9,1	358±32,25	ÇAKIL	31,95±3,39	36,6±8,2	424,3±31, 1
KUM	36±3,46	43,35±9,9	373±34,48	KUM	36,2±4,53	45,8±9,6	320,8±31, 6
ALÜVYON	44,8±2,25	39,9±9,7	423,3±35,4	ALÜVYO N	61,4±4,24	52,7±9,6	423,3±34, 9
KİL	37,2±3,82	46,9±9,5	346,8±33,7	KİL	176,85±15,5 6	184,8±47, 3	1469±168,7

Tablo 3.11. Sahil kumu örneklerinde tanecik boyutu analizinin karşılaştırmalı ^{238}U , ^{232}Th ve ^{40}K 'nın aktivite konsantrasyonları

4 NOLU SAHİL KUMU	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)	5 NOLU SAHİL KUMU	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)
ÇAKIL	36,8±3,04	31,1±8,9	401,2±32,8	ÇAKIL	32,85±3,89	31±8,3	302,3±29, 4
KUM	39,25±4,17	39,6±9,6	363,7±34,4	KUM	46,45±3,89	50,7±10,2	352,5±34, 5
ALÜVYON	34,85±3,39	31,9±9,5	404,2±34,1	ALÜVYON	40,35±3,39	40,2±10,1	429,7±36, 6
KİL	92±6,08	105,5±21,8	749,1 ±75,1	KİL	160,1 ±12,9	163,3±40,5	797,5±149, 5

6 NOLU SAHİL KUMU	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)	7 NOLU SAHİL KUMU	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)
ÇAKIL	37,65±2,83	48,9±8,6	315,7±30,8	ÇAKIL	67,2±3,61	63,5±12,5	328,5±44, 2
KUM	49,3±3,04	57,6±10	383,6±37,3	KUM	57,25±3,39	43,5±10,7	244,6±35, 7
ALÜVYON	45,85±2,97	57,1±9,7	281,6±34,3	ALÜVYON	51,9±4,24	41,5±9,6	205,3±33, 8
KİL	130,3±7,14	112,3±23,5	604,8±86,2	KİL	57,9±3,32	49,2±10	205,5±34, 1

8 NOLU SAHİL KUMU	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)	9 NOLU SAHİL KUMU	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)
ÇAKIL	56,8±4,53	60,8±11,8	312,2±41,4	ÇAKIL	46,75±2,55	46,1±8,7	256,2±31,7
KUM	75,35±7,92	97,1±19,4	515,2±71,3	KUM	51,6±4,53	43,7±10,1	244,8±32,9
ALÜVYON	127,65±8,7	123±21	397,1±70,3	ALÜVYON	43,45±2,97	46±9,3	238±33
KİL	106,9±4,53	95±17,8	358±60,7	KİL	110,6±9,76	107,8±21,1	383,8±72,8

Tablo 3.11.'in devamı

10 NOLU SAHİL KUMU	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)	11 NOLU SAHİL KUMU	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)
ÇAKIL	38,8±3,82	45,5±8,7	167,4±29	ÇAKIL	45,8±2,4	40,8±8,8	280,3±32,2
KUM	52,7±2,47	50,3±9,4	252,9±31,5	KUM	46,85±4,03	45,7±9,3	230,5±34,3
ALÜVYON	38,1±2,62	55,9±9,5	225,5±34	ALÜVYON	48,65±4,1	40,3±9	363,6±36,1
KİL	48,65±3,32	45±9,5	236,4±34,2	KİL	109,45±6,15	107,1±21,2	517,3±78,2

12 NOLU SAHİL KUMU	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)	13 NOLU SAHİL KUMU	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)
ÇAKIL	30,9±2,4	34±8,7	251,9±30,2	ÇAKIL	47,5±2,76	46,6±8,9	322±31,7
KUM	149,1±12,52	148,1±38,8	611,3±126,2	KUM	378,85±41,15	365±85,4	1235,8±28 5,7
ALÜVYON				ALÜVYON	161,87±17,04	143,6±36,9	731,6±120, 7
KİL	268,2±18,17	250,2±50,1	745,6±163,6	KİL	304,65±21,35	317,9±67,4	1128,4±24 0,7

14 NOLU SAHİL KUMU	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)	15 NOLU SAHİL KUMU	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)
ÇAKIL	37,3±3,04	33,5±7,8	227,2±27,8	ÇAKIL	43,95±3,32	38,5±8,5	245±28,5
KUM	58,5±3,18	48,2±9,8	175,8±30,7	KUM	45,65±2,97	40,7±9	235,4±32, 1
ALÜVYON	85,9±6,29	77±16,4	305±53,9	ALÜVYON	39,5±2,26	42,2±9,8	200,7±32, 4
KİL	126,9±14,5	178,1±28,2	696±97,5	KİL	122±6,29	119,2±26,7	354,2±87, 3

16 NOLU SAHİL KUMU	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)	17 NOLU SAHİL KUMU	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)
ÇAKIL	44,05±4,53	50,9±9,9	328,9±33,8	ÇAKIL	45,4±3,18	44±9,2	337,2±3 2,9
KUM	46,6±4,53	42,1±9,8	427±35,6	KUM	67,8±6,51	75,9±17,2	444±59, 8
ALÜVYON	46,65±3,89	54,8±10,5	329,6±37	ALÜVYON	50,3±3,25	48,2±9,5	327,5±3 4,5
KİL				KİL	136,6±9,48	131,3±22,5	658,9±7 8,5

Tablo 3.11.'in devamı

18 NOLU SAHİL KUMU	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)	19 NOLU SAHİL KUMU	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)
ÇAKIL	46,2±2,76	48,2±9,7	351,1±33	ÇAKIL	55,7±2,83	52,5±9,9	388,6±32,5
KUM	40,05±3,61	47,2±9,3	394,9±34,1	KUM	45,85±3,32	42,2±9	332,1±32,8
ALÜVYON				ALÜVYON	40,65±2,76	47,9±9,9	393,8±35,1
KİL				KİL	100,95±8,13	94,9±21,4	503,6±71,8

20 NOLU SAHİL KUMU	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)		
ÇAKIL	53,65±4,24	51,10±10,2	468,1±36,8		
KUM	48,9±3,96	54,7±10,2	498,3±36		
ALÜVYON	52,45±3,46	45,7±9,7	458,4±36,8		
KİL	110,1 ±8,2	117,6±22,5	721,8±81		

4. SONUÇ VE ÖNERİLER

Çalışmamızda Kastamonu ili Abana ve Çatalzeytin ilçelerinden toplanan 20 adet toprak ve 20 adet sahil kumu örneğinin gama spektrometri yöntemi kullanılarak NaI(Tl) dedektörü ile ²³⁸U, ²³²Th ve ⁴⁰K doğal radyonüklitlerinin aktivite konsantrasyonları ve bu konsantrasyonlardan yararlanılarak hesaplanan gama dozu, yıllık etkin doz eşdeğeri, radyum eşdeğer aktiviteleri, dış tehlike indeksleri ve gama aktivite konsantrasyon indeksi tespit edilmiştir. Yine toprak ve sahil kumu numunelerinin toplandığı noktalardan taşınabilir G-M sayacı kullanılarak gama dozu ölçülmüş ve bu ölçümler kullanılarak yıllık efektif dozlar tespit edilmiş ve bu değerler hesaplanan değerlerle karşılaştırılmıştır. Ayrıca toplanan sahil kumu örneklerinde tanecik boyutu analizi yapılmıştır. Sahil kumu örnekleri ayrı bir elemeden geçirilerek çakıl, kum, alüvyon ve kil boyutlarında ayrı numuneler oluşturularak her biri için ayrı ayrı radyoaktivite konsantrasyonları hesaplanımıştır. Numunelerden ölçülen ²³⁸U, ²³²Th ve ⁴⁰K'nın radyoaktivite konsantrasyonlarının ortalama değerleri Tablo 4.1'de verilmiştir [36].

ÖR	NEK TÜRÜ	²³⁸ U (Bq/kg)	²³² Th (Bq/kg)	⁴⁰ K (Bq/kg)
SAHİL KUMU	Ortalama(±SS)	28,04±0,72	43,67±0,61	374,09±2,34
TOPRAK	Ortalama(±SS)	55,20±2,93	66,96±1,76	504,44±6,43
ÇAKIL	Ortalama(±SS)	44,29±0,70	44,08±1,19	319,27±4,13
KUM	Ortalama(±SS)	72,22±8,71	72,72±18,17	401,91±60,28
ALÜVYON	Ortalama(±SS)	59,67±3,57	45,7±7,05	361,07±22,16
KİL	Ortalama(±SS)	129,37±5,39	130,95±15,67	616,28±55,34
DÜNYA	ORTALAMASI	35	30	400

Tablo 4.1. ^{238}U , ^{232}Th ve ^{40}K 'nın numunelerdeki ortalama konsantrasyonları

²³⁸U, ²³²Th ve ⁴⁰K'nın ortalama konsantrasyonları elekten elde ettiğimiz kil boyutundaki numunelerde oldukça yüksek çıkmıştır. Tanecik boyutu küçüldükçe konsantrasyon oranlarının da kısmen arttığı gözlemlenmiştir. Numunelerdeki ortalama değerler genel olarak dünya ortalamalarının üzerinde çıkmıştır.

Çalışma bölgesi için radyonüklitlerin spesifik aktiviteleri kullanılarak radyasyon tehlike parametrelerinin ortalamaları Tablo 4.2'de verilmiştir ve değerler ortalama veya tavsiye edilen değerlere yakın olarak gözlemlenmiştir [36,37].

	Örnek Türü	Ölçüm Türü	D (nGy/h)	AEDE (µSv/y)	Ra _{eq} (Bq/kg)	H _{ex} (≤ 1)	Iγr Bq/kg
	Sahil Kumu	Yerinde Ölçüm	72,65	89,09			
	Sahil Kumu	Hesaplanan Değer	57,04	69,95	119,28	0,32	0,87
	Toprak	Yerinde Ölçüm	100,27	122,97			
	Toprak	Hesaplanan Değer	89,69	110,00	189,79	0,51	1,37
-	Ortalama veya Tavsiye Edilen Değerler		57	70	370	≤1	≤1

Tablo 4.2. Ortalama radyasyon tehlike parametreleri

Çalışmamızda yapay bir radyonüklit olan ¹³⁷Cs'ye toprak ve sahil kumu numunelerinde gözlemlenmemiştir. Bu çalışma ile Kastamonu ili Abana-Çatalzeytin bölgesinin doğal ve yapay radyoaktivite düzeyi belirlenmiştir. Bu ve buna benzer çalışmalar ülkemizde ve dünyada yapılmış ve yapılmaya devam etmektedir. Ülkemizde bu tür çalışmaların yapılması taban radyasyon düzeylerin belirlenmesi açısından oldukça önemlidir. Mersin ve Sinop'a kurulacak olan nükleer santralleri de göz önünde bulundurursak bu tür çalışmaların önemi daha da artacaktır.

KAYNAKLAR

- [1] Doğal radyasyon kaynakları. taek.gov.tr/bilgikosesi/184radyasyonlabirlikteyasiyoruz/501-dogal-radyasyon-kaynaklari.html, Erişim tarihi: 20/08/2017
- [2] Uluslararası kuruluşlar. http://www.taek.gov.tr/tr/sss/radyasyondankorunma/504-radyasyondan-korunma-uluslararasi-kuruluslar.html, Erişim tarihi: 01/09/2017
- [3] Radyasyon türleri. http://www.tamsat.org.tr/tr/uzay-radyasyonunun-elektronikdevreler-ve-uydu-sistemleri-uzerine-etkileri-radyasyona-karsi guclendirme-1/ Erişim tarihi: 15/09/2017
- [4] Değerlier M. "Adana İli ve Çevresinin Çevresel Doğal Radyoaktivitesinin Saptanması ve Doğal Radyasyonların Yıllık Etkin Doz Eşdeğerinin Bulunması", Çukurova Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, 2007.
- [5] TAEK, Radyasyon insan ve çevre, iyonlaştırıcı radyasyon, etkileri ve kullanım alanları, güvenli kullanımı için uygulamada olan tedbirler, 2009 P:12
- [6] MEB (2011). *Çevre Sağliği Radyasyon Kirliliği*. Ankara: Milli Eğitim Bakanlığı, Sayfa: 4-5
- [7] Serbest nötronlar. http://www.taek.gov.tr/ogrenci/bolum4_03.html, Erişim tarihi:13/11/2017
- [8] Herman Cember and Thomas E. Jhonson (2009). *Introduction to health physics*, 4th edition, The McGraw-Hill Companies, ISBN: 978-0-07-164323-8
- [9] Radyasyon kaynaklarının doz oranları. http://www.taek.gov.tr/tr/2016-06-09-00-43-46/1087-dogal-radyasyon-kaynaklari.html, Erişim tarihi: 25/12/2017
- [10] Bakar, K., "Nükleer Tıp Alanında Çalışan Personelin Maruz Kaldığı Radyasyonun Fiziksel Dozimetri ile Belirlenmesi ve Radyasyonun İnsan Sağlığı Üzerindeki Etkileri", Yüksek Lisans Tezi, *Dumlupınar Üniversitesi* Fen Bilimleri Enstitüsü, 96 (2012).
- [11] http://www.unscear.org/unscear/en/faq.html, Erişim tarihi: 05/01/2018
- [12] Çelebi, N. "Çevresel Örneklerde Uranyum, Radyum ve Radon Ölçüm Tekniklerinin Geliştirilmesi", Doktora Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, 1995.

- [13] Reşitoğlu, S., "Kars-İl Merkezi Topraklarında Doğal Radyoaktivite Seviyelerinin Belirlenmesi", Yüksek Lisans Tezi, Kafkas Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı., Yüksek Lisans Tezi, 2011.
- [14] Çam, S.; Barıs, C.; Özsoylu, F.B.; Erees, F.S., "*Radon, Dogal Gaz, Biyogaz ve Çöplük Gazı. Biyoenerji 2004 Sempozyumu Bildiriler Kitabı*", sayfa:294-301 (2004).
- [15] Tsoulfanidis N, *Measurement and Deection of Radiation*, Second edition, University of Missouri-Rolla, 1995.
- [16] Rittersdorf I., "*Gamma Ray Spectroscopy*" Nuclear Engineering & Radiological Sciences March 20, 2007.
- [17] Gören, E., "Adana İçme Sularında Trityum Aktivitesinin Belirlenmesi", Yüksek Lisans Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı, 2011.
- [18] Akkoyun, S., "Uzayda Gama Işını Ölçümleri-Bir Geant Simülasyonu", Yüksek Lisans Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı, 2006.
- [19] Arya Atam. P.,. ''Çekirdek Fiziğinin Esasları''. Çeviri Editörü Şahin Y. Balkan Yayıncılık, 1989, Erzurum.
- [20] Altıkulaç A (2014). Samsun ve ilçelerine ait çevresel örneklerdeki (yüzey toprağı, su, mantar ve karalahana) doğal radyoaktivitenin ölçülmesi ve bu aktiviteden kaynaklanan yıllık etkin dozun belirlenmesi. Doktora Tezi. On dokuz Mayıs Üniversitesi Fizik Anabilim Dalı
- [21] Mavi, B., "Isparta'daki Bazı Yapı Malzemelerinde Doğal Radyoaktivite Tayini", Doktora Tezi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Isparta 75 (2010).
- [22] http://www.kastamonu.gov.tr/deniz-turizmi Erişim tarihi:18/01/2018
- [23] http://www.kgm.gov.tr/sayfalar/kgm/sitetr/uzakliklar/ilcedenilceyemesfe.aspx Erişim tarihi:12/02/2018
- [24] http://www.kastamonukultur.gov.tr Erişim tarihi:19/02/2018
- [25] Relationships between sea-bed radionuclide activities and some sedimentological variables R.A. Ligero*, I. Ramos-Lerate, M. Barrera, M. Casas-Ruiz 2001.
- [26] Gama spektrometresi. http://www.taek.gov.tr Erişim tarihi:07/03/2018
- [27] ORTEC 3''x 3'' NaI(Tl) sintilasyon(1ş1ldama) dedektörü. https://www.orteconline.com Erişim tarihi:23/03/2018
- [28] Zorer, Ö. S., "Bendimahi Çayı'nda Ve Çayın Van Gölü'ne Döküldüğü Noktada Doğal Radyoaktivite Seviyesinin Belirlenmesi" Doktora Tezi, Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı, 2006.
- [29] Rosseland, S., Z. *Physik*, 14, p.173, (1923).
- [30] Ayçık G. A., "Çevre Radyoaktivitesinin İzlenmesinde Örnekleme Ölçme Ve Analiz Yöntemleri" Türkiye Atom Enerjisi Kurumu, 1992.
- [31] Gordon R. Gilmore, John Wiley & Sons "Practical Gamma-ray Spectrometry" 2nd Edition Ltd. ISBN: 978-0-470-86196-7 (2008).
- [32] Kurnaz, A. vd, 2011. "*Radiological maps for Trabzon, Turkey*". Journal of Environmental Radioactivity, Vol. 102; 393-399
- [33] Customization Tools Manual Genie-2000. (2004). Maestro-32 Software User's Manual.
- [34] United Nations Scientific Committe on the Effects of Atomic Radiation. (1988). *Report to the General Assembly*, with Annexes.57.
- [35] Beretka, J., & Mathew P. J. (1985). Natural Radioactivity of Australian Building Materials, Industrial Wastes and by Products, Health Physics, 48: 87-95.
- [36] Isinkaye M.O. (2008). Radiometric assessment of natural radioactivity levels of bituminous soil in Agbabu, southwest Nigeria Article in Radiation Measurements, 127.
- [37] ICRP. (1991). International Commission on Radiological Protection, Pergamon Press, ICRP Publication 60, Ann. ICRP 21 (1-3), Oxford.
- [38] Karahan, G. (1997). İstanbul'un Çevresel Doğal Radyoaktivitesinin Tayini ve Doğal Radyasyonların Yıllık Etkin Doz Eşdeğeri. Doktora Tezi, İstanbul, Üniversitesi, İstanbul.

ÖZGEÇMİŞ

Adı Soyadı	: Murat ÖZCAN
Doğum Yeri ve Yılı : Ankara / 30.07.1984	
Medeni Hali	: Evli
Yabancı Dili	: İngilizce
E-posta	: murat_ozcan@kastamonu.edu.tr

Eğitim Durumu

Lise	: Ömer Seyfettin Lisesi (2002)
Lisans	: Gazi Üniversitesi Fen-Edebiyat Fakültesi Fizik Bölümü (2007)

Mesleki Deneyim

İş Yeri

: Kastamonu Üniversitesi 2011-... (Halen)

Uluslararası Konferanslarda Yayınlanan Bildiriler

ÇETİNER, M.A., KURNAZ, A., ÖZCAN, M., *'Abana-Çatalzeytin Kastamonu Bölgesi Doğal Radyoaktivite Seviyesinin Belirlenmesi''* 9th Balkan Physics, p. 305, 24-27 Agust 2015, Istanbul-Turkey. (Oral Presentation)